Files
ipxe/src/drivers/net/etherfabric.c
Michael Brown 9dccbc0af2 [i2c] Generalise i2c bit-bashing support to addressless devices
Some devices (e.g. the Atmel AT24C11) have no concept of a device
address; they respond to every device address and use this value as
the word address.  Some other devices use part of the device address
field to extend the word address field.

Generalise the i2c bit-bashing support to handle this by defining the
device address length and word address length as properties of an i2c
device.  The word address is assumed to overflow into the device
address field if the address used exceeds the width of the word
address field.

Also add a bus reset mechanism.  i2c chips don't usually have a reset
line, so rebooting the host will not clear any bizarre state that the
chip may be in.  We reset the bus by clocking SCL until we see SDA
high, at which point we know we can generate a start condition and
have it seen by all devices.  We then generate a stop condition to
leave the bus in a known state prior to use.

Finally, add some extra debugging messages to i2c_bit.c.
2008-10-01 19:24:56 +01:00

3437 lines
92 KiB
C

/**************************************************************************
*
* Etherboot driver for Level 5 Etherfabric network cards
*
* Written by Michael Brown <mbrown@fensystems.co.uk>
*
* Copyright Fen Systems Ltd. 2005
* Copyright Level 5 Networks Inc. 2005
*
* This software may be used and distributed according to the terms of
* the GNU General Public License (GPL), incorporated herein by
* reference. Drivers based on or derived from this code fall under
* the GPL and must retain the authorship, copyright and license
* notice.
*
**************************************************************************
*/
#include "etherboot.h"
#include "nic.h"
#include <errno.h>
#include <gpxe/pci.h>
#include <gpxe/bitbash.h>
#include <gpxe/i2c.h>
#include <gpxe/spi.h>
#include <gpxe/nvo.h>
#define dma_addr_t unsigned long
#include "etherfabric.h"
/**************************************************************************
*
* Constants and macros
*
**************************************************************************
*/
#define EFAB_ASSERT(x) \
do { \
if ( ! (x) ) { \
DBG ( "ASSERT(%s) failed at %s line %d [%s]\n", #x, \
__FILE__, __LINE__, __FUNCTION__ ); \
} \
} while (0)
#define EFAB_TRACE(...) DBG ( __VA_ARGS__ )
#define EFAB_REGDUMP(...)
#define EFAB_LOG(...) printf ( __VA_ARGS__ )
#define EFAB_ERR(...) printf ( __VA_ARGS__ )
#define FALCON_USE_IO_BAR 1
/*
* EtherFabric constants
*
*/
/* PCI Definitions */
#define EFAB_VENDID_LEVEL5 0x1924
#define FALCON_P_DEVID 0x0703 /* Temporary PCI ID */
#define EF1002_DEVID 0xC101
/**************************************************************************
*
* Data structures
*
**************************************************************************
*/
/*
* Buffers used for TX, RX and event queue
*
*/
#define EFAB_BUF_ALIGN 4096
#define EFAB_DATA_BUF_SIZE 2048
#define EFAB_RX_BUFS 16
#define EFAB_RXD_SIZE 512
#define EFAB_TXD_SIZE 512
#define EFAB_EVQ_SIZE 512
struct efab_buffers {
uint8_t eventq[4096];
uint8_t rxd[4096];
uint8_t txd[4096];
uint8_t tx_buf[EFAB_DATA_BUF_SIZE];
uint8_t rx_buf[EFAB_RX_BUFS][EFAB_DATA_BUF_SIZE];
uint8_t padding[EFAB_BUF_ALIGN-1];
};
static struct efab_buffers efab_buffers;
/** An RX buffer */
struct efab_rx_buf {
uint8_t *addr;
unsigned int len;
int id;
};
/** A TX buffer */
struct efab_tx_buf {
uint8_t *addr;
unsigned int len;
int id;
};
/** Etherfabric event type */
enum efab_event_type {
EFAB_EV_NONE = 0,
EFAB_EV_TX,
EFAB_EV_RX,
};
/** Etherfabric event */
struct efab_event {
/** Event type */
enum efab_event_type type;
/** RX buffer ID */
int rx_id;
/** RX length */
unsigned int rx_len;
/** Packet should be dropped */
int drop;
};
/*
* Etherfabric abstraction layer
*
*/
struct efab_nic;
struct efab_operations {
void ( * get_membase ) ( struct efab_nic *efab );
int ( * reset ) ( struct efab_nic *efab );
int ( * init_nic ) ( struct efab_nic *efab );
int ( * read_eeprom ) ( struct efab_nic *efab );
void ( * build_rx_desc ) ( struct efab_nic *efab,
struct efab_rx_buf *rx_buf );
void ( * notify_rx_desc ) ( struct efab_nic *efab );
void ( * build_tx_desc ) ( struct efab_nic *efab,
struct efab_tx_buf *tx_buf );
void ( * notify_tx_desc ) ( struct efab_nic *efab );
int ( * fetch_event ) ( struct efab_nic *efab,
struct efab_event *event );
void ( * mask_irq ) ( struct efab_nic *efab, int enabled );
void ( * generate_irq ) ( struct efab_nic *efab );
void ( * mdio_write ) ( struct efab_nic *efab, int location,
int value );
int ( * mdio_read ) ( struct efab_nic *efab, int location );
};
struct efab_mac_operations {
void ( * mac_writel ) ( struct efab_nic *efab, efab_dword_t *value,
unsigned int mac_reg );
void ( * mac_readl ) ( struct efab_nic *efab, efab_dword_t *value,
unsigned int mac_reg );
int ( * init ) ( struct efab_nic *efab );
int ( * reset ) ( struct efab_nic *efab );
};
/*
* Driver private data structure
*
*/
struct efab_nic {
/** PCI device */
struct pci_device *pci;
/** Operations table */
struct efab_operations *op;
/** MAC operations table */
struct efab_mac_operations *mac_op;
/** Memory base */
void *membase;
/** I/O base */
unsigned int iobase;
/** Buffers */
uint8_t *eventq; /* Falcon only */
uint8_t *txd; /* Falcon only */
uint8_t *rxd; /* Falcon only */
struct efab_tx_buf tx_buf;
struct efab_rx_buf rx_bufs[EFAB_RX_BUFS];
/** Buffer pointers */
unsigned int eventq_read_ptr; /* Falcon only */
unsigned int tx_write_ptr;
unsigned int rx_write_ptr;
/** Port 0/1 on the NIC */
int port;
/** MAC address */
uint8_t mac_addr[ETH_ALEN];
/** GMII link options */
unsigned int link_options;
/** Link status */
int link_up;
/* Nic type fields */
int has_flash : 1;
int has_eeprom : 1;
int is_10g : 1;
int is_dual : 1;
int is_asic : 1;
/** INT_REG_KER for Falcon */
efab_oword_t int_ker __attribute__ (( aligned ( 16 ) ));
/** I2C access */
struct i2c_bit_basher ef1002_i2c;
unsigned long ef1002_i2c_outputs;
struct i2c_device ef1002_eeprom;
/** SPI access */
struct spi_bus spi;
struct spi_device falcon_flash;
struct spi_device falcon_eeprom;
/** Non-volatile options */
struct nvo_block nvo;
};
/**************************************************************************
*
* GMII routines
*
**************************************************************************
*/
/* GMII registers */
#define MII_BMSR 0x01 /* Basic mode status register */
#define MII_ADVERTISE 0x04 /* Advertisement control register */
#define MII_LPA 0x05 /* Link partner ability register*/
#define GMII_GTCR 0x09 /* 1000BASE-T control register */
#define GMII_GTSR 0x0a /* 1000BASE-T status register */
#define GMII_PSSR 0x11 /* PHY-specific status register */
/* Basic mode status register. */
#define BMSR_LSTATUS 0x0004 /* Link status */
/* Link partner ability register. */
#define LPA_10HALF 0x0020 /* Can do 10mbps half-duplex */
#define LPA_10FULL 0x0040 /* Can do 10mbps full-duplex */
#define LPA_100HALF 0x0080 /* Can do 100mbps half-duplex */
#define LPA_100FULL 0x0100 /* Can do 100mbps full-duplex */
#define LPA_100BASE4 0x0200 /* Can do 100mbps 4k packets */
#define LPA_PAUSE 0x0400 /* Bit 10 - MAC pause */
/* Pseudo extensions to the link partner ability register */
#define LPA_1000FULL 0x00020000
#define LPA_1000HALF 0x00010000
#define LPA_10000FULL 0x00040000
#define LPA_10000HALF 0x00080000
#define LPA_100 (LPA_100FULL | LPA_100HALF | LPA_100BASE4)
#define LPA_1000 ( LPA_1000FULL | LPA_1000HALF )
#define LPA_10000 ( LPA_10000FULL | LPA_10000HALF )
#define LPA_DUPLEX ( LPA_10FULL | LPA_100FULL | LPA_1000FULL )
/* Mask of bits not associated with speed or duplexity. */
#define LPA_OTHER ~( LPA_10FULL | LPA_10HALF | LPA_100FULL | \
LPA_100HALF | LPA_1000FULL | LPA_1000HALF )
/* PHY-specific status register */
#define PSSR_LSTATUS 0x0400 /* Bit 10 - link status */
/**
* Retrieve GMII autonegotiation advertised abilities
*
*/
static unsigned int gmii_autoneg_advertised ( struct efab_nic *efab ) {
unsigned int mii_advertise;
unsigned int gmii_advertise;
/* Extended bits are in bits 8 and 9 of GMII_GTCR */
mii_advertise = efab->op->mdio_read ( efab, MII_ADVERTISE );
gmii_advertise = ( ( efab->op->mdio_read ( efab, GMII_GTCR ) >> 8 )
& 0x03 );
return ( ( gmii_advertise << 16 ) | mii_advertise );
}
/**
* Retrieve GMII autonegotiation link partner abilities
*
*/
static unsigned int gmii_autoneg_lpa ( struct efab_nic *efab ) {
unsigned int mii_lpa;
unsigned int gmii_lpa;
/* Extended bits are in bits 10 and 11 of GMII_GTSR */
mii_lpa = efab->op->mdio_read ( efab, MII_LPA );
gmii_lpa = ( efab->op->mdio_read ( efab, GMII_GTSR ) >> 10 ) & 0x03;
return ( ( gmii_lpa << 16 ) | mii_lpa );
}
/**
* Calculate GMII autonegotiated link technology
*
*/
static unsigned int gmii_nway_result ( unsigned int negotiated ) {
unsigned int other_bits;
/* Mask out the speed and duplexity bits */
other_bits = negotiated & LPA_OTHER;
if ( negotiated & LPA_1000FULL )
return ( other_bits | LPA_1000FULL );
else if ( negotiated & LPA_1000HALF )
return ( other_bits | LPA_1000HALF );
else if ( negotiated & LPA_100FULL )
return ( other_bits | LPA_100FULL );
else if ( negotiated & LPA_100BASE4 )
return ( other_bits | LPA_100BASE4 );
else if ( negotiated & LPA_100HALF )
return ( other_bits | LPA_100HALF );
else if ( negotiated & LPA_10FULL )
return ( other_bits | LPA_10FULL );
else return ( other_bits | LPA_10HALF );
}
/**
* Check GMII PHY link status
*
*/
static int gmii_link_ok ( struct efab_nic *efab ) {
int status;
int phy_status;
/* BMSR is latching - it returns "link down" if the link has
* been down at any point since the last read. To get a
* real-time status, we therefore read the register twice and
* use the result of the second read.
*/
efab->op->mdio_read ( efab, MII_BMSR );
status = efab->op->mdio_read ( efab, MII_BMSR );
/* Read the PHY-specific Status Register. This is
* non-latching, so we need do only a single read.
*/
phy_status = efab->op->mdio_read ( efab, GMII_PSSR );
return ( ( status & BMSR_LSTATUS ) && ( phy_status & PSSR_LSTATUS ) );
}
/**************************************************************************
*
* Alaska PHY
*
**************************************************************************
*/
/**
* Initialise Alaska PHY
*
*/
static void alaska_init ( struct efab_nic *efab ) {
unsigned int advertised, lpa;
/* Read link up status */
efab->link_up = gmii_link_ok ( efab );
if ( ! efab->link_up )
return;
/* Determine link options from PHY. */
advertised = gmii_autoneg_advertised ( efab );
lpa = gmii_autoneg_lpa ( efab );
efab->link_options = gmii_nway_result ( advertised & lpa );
/* print out the link speed */
EFAB_LOG ( "%dMbps %s-duplex (%04x,%04x)\n",
( efab->link_options & LPA_10000 ? 1000 :
( efab->link_options & LPA_1000 ? 1000 :
( efab->link_options & LPA_100 ? 100 : 10 ) ) ),
( efab->link_options & LPA_DUPLEX ? "full" : "half" ),
advertised, lpa );
}
/**************************************************************************
*
* Mentor MAC
*
**************************************************************************
*/
/* GMAC configuration register 1 */
#define GM_CFG1_REG_MAC 0x00
#define GM_SW_RST_LBN 31
#define GM_SW_RST_WIDTH 1
#define GM_RX_FC_EN_LBN 5
#define GM_RX_FC_EN_WIDTH 1
#define GM_TX_FC_EN_LBN 4
#define GM_TX_FC_EN_WIDTH 1
#define GM_RX_EN_LBN 2
#define GM_RX_EN_WIDTH 1
#define GM_TX_EN_LBN 0
#define GM_TX_EN_WIDTH 1
/* GMAC configuration register 2 */
#define GM_CFG2_REG_MAC 0x01
#define GM_PAMBL_LEN_LBN 12
#define GM_PAMBL_LEN_WIDTH 4
#define GM_IF_MODE_LBN 8
#define GM_IF_MODE_WIDTH 2
#define GM_PAD_CRC_EN_LBN 2
#define GM_PAD_CRC_EN_WIDTH 1
#define GM_FD_LBN 0
#define GM_FD_WIDTH 1
/* GMAC maximum frame length register */
#define GM_MAX_FLEN_REG_MAC 0x04
#define GM_MAX_FLEN_LBN 0
#define GM_MAX_FLEN_WIDTH 16
/* GMAC MII management configuration register */
#define GM_MII_MGMT_CFG_REG_MAC 0x08
#define GM_MGMT_CLK_SEL_LBN 0
#define GM_MGMT_CLK_SEL_WIDTH 3
/* GMAC MII management command register */
#define GM_MII_MGMT_CMD_REG_MAC 0x09
#define GM_MGMT_SCAN_CYC_LBN 1
#define GM_MGMT_SCAN_CYC_WIDTH 1
#define GM_MGMT_RD_CYC_LBN 0
#define GM_MGMT_RD_CYC_WIDTH 1
/* GMAC MII management address register */
#define GM_MII_MGMT_ADR_REG_MAC 0x0a
#define GM_MGMT_PHY_ADDR_LBN 8
#define GM_MGMT_PHY_ADDR_WIDTH 5
#define GM_MGMT_REG_ADDR_LBN 0
#define GM_MGMT_REG_ADDR_WIDTH 5
/* GMAC MII management control register */
#define GM_MII_MGMT_CTL_REG_MAC 0x0b
#define GM_MGMT_CTL_LBN 0
#define GM_MGMT_CTL_WIDTH 16
/* GMAC MII management status register */
#define GM_MII_MGMT_STAT_REG_MAC 0x0c
#define GM_MGMT_STAT_LBN 0
#define GM_MGMT_STAT_WIDTH 16
/* GMAC MII management indicators register */
#define GM_MII_MGMT_IND_REG_MAC 0x0d
#define GM_MGMT_BUSY_LBN 0
#define GM_MGMT_BUSY_WIDTH 1
/* GMAC station address register 1 */
#define GM_ADR1_REG_MAC 0x10
#define GM_HWADDR_5_LBN 24
#define GM_HWADDR_5_WIDTH 8
#define GM_HWADDR_4_LBN 16
#define GM_HWADDR_4_WIDTH 8
#define GM_HWADDR_3_LBN 8
#define GM_HWADDR_3_WIDTH 8
#define GM_HWADDR_2_LBN 0
#define GM_HWADDR_2_WIDTH 8
/* GMAC station address register 2 */
#define GM_ADR2_REG_MAC 0x11
#define GM_HWADDR_1_LBN 24
#define GM_HWADDR_1_WIDTH 8
#define GM_HWADDR_0_LBN 16
#define GM_HWADDR_0_WIDTH 8
/* GMAC FIFO configuration register 0 */
#define GMF_CFG0_REG_MAC 0x12
#define GMF_FTFENREQ_LBN 12
#define GMF_FTFENREQ_WIDTH 1
#define GMF_STFENREQ_LBN 11
#define GMF_STFENREQ_WIDTH 1
#define GMF_FRFENREQ_LBN 10
#define GMF_FRFENREQ_WIDTH 1
#define GMF_SRFENREQ_LBN 9
#define GMF_SRFENREQ_WIDTH 1
#define GMF_WTMENREQ_LBN 8
#define GMF_WTMENREQ_WIDTH 1
/* GMAC FIFO configuration register 1 */
#define GMF_CFG1_REG_MAC 0x13
#define GMF_CFGFRTH_LBN 16
#define GMF_CFGFRTH_WIDTH 5
#define GMF_CFGXOFFRTX_LBN 0
#define GMF_CFGXOFFRTX_WIDTH 16
/* GMAC FIFO configuration register 2 */
#define GMF_CFG2_REG_MAC 0x14
#define GMF_CFGHWM_LBN 16
#define GMF_CFGHWM_WIDTH 6
#define GMF_CFGLWM_LBN 0
#define GMF_CFGLWM_WIDTH 6
/* GMAC FIFO configuration register 3 */
#define GMF_CFG3_REG_MAC 0x15
#define GMF_CFGHWMFT_LBN 16
#define GMF_CFGHWMFT_WIDTH 6
#define GMF_CFGFTTH_LBN 0
#define GMF_CFGFTTH_WIDTH 6
/* GMAC FIFO configuration register 4 */
#define GMF_CFG4_REG_MAC 0x16
#define GMF_HSTFLTRFRM_PAUSE_LBN 12
#define GMF_HSTFLTRFRM_PAUSE_WIDTH 12
/* GMAC FIFO configuration register 5 */
#define GMF_CFG5_REG_MAC 0x17
#define GMF_CFGHDPLX_LBN 22
#define GMF_CFGHDPLX_WIDTH 1
#define GMF_CFGBYTMODE_LBN 19
#define GMF_CFGBYTMODE_WIDTH 1
#define GMF_HSTDRPLT64_LBN 18
#define GMF_HSTDRPLT64_WIDTH 1
#define GMF_HSTFLTRFRMDC_PAUSE_LBN 12
#define GMF_HSTFLTRFRMDC_PAUSE_WIDTH 1
struct efab_mentormac_parameters {
int gmf_cfgfrth;
int gmf_cfgftth;
int gmf_cfghwmft;
int gmf_cfghwm;
int gmf_cfglwm;
};
/**
* Reset Mentor MAC
*
*/
static void mentormac_reset ( struct efab_nic *efab ) {
efab_dword_t reg;
int save_port;
/* Take into reset */
EFAB_POPULATE_DWORD_1 ( reg, GM_SW_RST, 1 );
efab->mac_op->mac_writel ( efab, &reg, GM_CFG1_REG_MAC );
udelay ( 1000 );
/* Take out of reset */
EFAB_POPULATE_DWORD_1 ( reg, GM_SW_RST, 0 );
efab->mac_op->mac_writel ( efab, &reg, GM_CFG1_REG_MAC );
udelay ( 1000 );
/* Mentor MAC connects both PHYs to MAC 0 */
save_port = efab->port;
efab->port = 0;
/* Configure GMII interface so PHY is accessible. Note that
* GMII interface is connected only to port 0, and that on
* Falcon this is a no-op.
*/
EFAB_POPULATE_DWORD_1 ( reg, GM_MGMT_CLK_SEL, 0x4 );
efab->mac_op->mac_writel ( efab, &reg, GM_MII_MGMT_CFG_REG_MAC );
udelay ( 10 );
efab->port = save_port;
}
/**
* Initialise Mentor MAC
*
*/
static void mentormac_init ( struct efab_nic *efab,
struct efab_mentormac_parameters *params ) {
int pause, if_mode, full_duplex, bytemode, half_duplex;
efab_dword_t reg;
/* Configuration register 1 */
pause = ( efab->link_options & LPA_PAUSE ) ? 1 : 0;
if ( ! ( efab->link_options & LPA_DUPLEX ) ) {
/* Half-duplex operation requires TX flow control */
pause = 1;
}
EFAB_POPULATE_DWORD_4 ( reg,
GM_TX_EN, 1,
GM_TX_FC_EN, pause,
GM_RX_EN, 1,
GM_RX_FC_EN, 1 );
efab->mac_op->mac_writel ( efab, &reg, GM_CFG1_REG_MAC );
udelay ( 10 );
/* Configuration register 2 */
if_mode = ( efab->link_options & LPA_1000 ) ? 2 : 1;
full_duplex = ( efab->link_options & LPA_DUPLEX ) ? 1 : 0;
EFAB_POPULATE_DWORD_4 ( reg,
GM_IF_MODE, if_mode,
GM_PAD_CRC_EN, 1,
GM_FD, full_duplex,
GM_PAMBL_LEN, 0x7 /* ? */ );
efab->mac_op->mac_writel ( efab, &reg, GM_CFG2_REG_MAC );
udelay ( 10 );
/* Max frame len register */
EFAB_POPULATE_DWORD_1 ( reg, GM_MAX_FLEN, ETH_FRAME_LEN + 4 /* FCS */);
efab->mac_op->mac_writel ( efab, &reg, GM_MAX_FLEN_REG_MAC );
udelay ( 10 );
/* FIFO configuration register 0 */
EFAB_POPULATE_DWORD_5 ( reg,
GMF_FTFENREQ, 1,
GMF_STFENREQ, 1,
GMF_FRFENREQ, 1,
GMF_SRFENREQ, 1,
GMF_WTMENREQ, 1 );
efab->mac_op->mac_writel ( efab, &reg, GMF_CFG0_REG_MAC );
udelay ( 10 );
/* FIFO configuration register 1 */
EFAB_POPULATE_DWORD_2 ( reg,
GMF_CFGFRTH, params->gmf_cfgfrth,
GMF_CFGXOFFRTX, 0xffff );
efab->mac_op->mac_writel ( efab, &reg, GMF_CFG1_REG_MAC );
udelay ( 10 );
/* FIFO configuration register 2 */
EFAB_POPULATE_DWORD_2 ( reg,
GMF_CFGHWM, params->gmf_cfghwm,
GMF_CFGLWM, params->gmf_cfglwm );
efab->mac_op->mac_writel ( efab, &reg, GMF_CFG2_REG_MAC );
udelay ( 10 );
/* FIFO configuration register 3 */
EFAB_POPULATE_DWORD_2 ( reg,
GMF_CFGHWMFT, params->gmf_cfghwmft,
GMF_CFGFTTH, params->gmf_cfgftth );
efab->mac_op->mac_writel ( efab, &reg, GMF_CFG3_REG_MAC );
udelay ( 10 );
/* FIFO configuration register 4 */
EFAB_POPULATE_DWORD_1 ( reg, GMF_HSTFLTRFRM_PAUSE, 1 );
efab->mac_op->mac_writel ( efab, &reg, GMF_CFG4_REG_MAC );
udelay ( 10 );
/* FIFO configuration register 5 */
bytemode = ( efab->link_options & LPA_1000 ) ? 1 : 0;
half_duplex = ( efab->link_options & LPA_DUPLEX ) ? 0 : 1;
efab->mac_op->mac_readl ( efab, &reg, GMF_CFG5_REG_MAC );
EFAB_SET_DWORD_FIELD ( reg, GMF_CFGBYTMODE, bytemode );
EFAB_SET_DWORD_FIELD ( reg, GMF_CFGHDPLX, half_duplex );
EFAB_SET_DWORD_FIELD ( reg, GMF_HSTDRPLT64, half_duplex );
EFAB_SET_DWORD_FIELD ( reg, GMF_HSTFLTRFRMDC_PAUSE, 0 );
efab->mac_op->mac_writel ( efab, &reg, GMF_CFG5_REG_MAC );
udelay ( 10 );
/* MAC address */
EFAB_POPULATE_DWORD_4 ( reg,
GM_HWADDR_5, efab->mac_addr[5],
GM_HWADDR_4, efab->mac_addr[4],
GM_HWADDR_3, efab->mac_addr[3],
GM_HWADDR_2, efab->mac_addr[2] );
efab->mac_op->mac_writel ( efab, &reg, GM_ADR1_REG_MAC );
udelay ( 10 );
EFAB_POPULATE_DWORD_2 ( reg,
GM_HWADDR_1, efab->mac_addr[1],
GM_HWADDR_0, efab->mac_addr[0] );
efab->mac_op->mac_writel ( efab, &reg, GM_ADR2_REG_MAC );
udelay ( 10 );
}
/**
* Wait for GMII access to complete
*
*/
static int mentormac_gmii_wait ( struct efab_nic *efab ) {
int count;
efab_dword_t indicator;
for ( count = 0 ; count < 1000 ; count++ ) {
udelay ( 10 );
efab->mac_op->mac_readl ( efab, &indicator,
GM_MII_MGMT_IND_REG_MAC );
if ( EFAB_DWORD_FIELD ( indicator, GM_MGMT_BUSY ) == 0 )
return 1;
}
EFAB_ERR ( "Timed out waiting for GMII\n" );
return 0;
}
/**
* Write a GMII register
*
*/
static void mentormac_mdio_write ( struct efab_nic *efab, int phy_id,
int location, int value ) {
efab_dword_t reg;
int save_port;
EFAB_TRACE ( "Writing GMII %d register %02x with %04x\n", phy_id,
location, value );
/* Mentor MAC connects both PHYs to MAC 0 */
save_port = efab->port;
efab->port = 0;
/* Check MII not currently being accessed */
if ( ! mentormac_gmii_wait ( efab ) )
goto out;
/* Write the address register */
EFAB_POPULATE_DWORD_2 ( reg,
GM_MGMT_PHY_ADDR, phy_id,
GM_MGMT_REG_ADDR, location );
efab->mac_op->mac_writel ( efab, &reg, GM_MII_MGMT_ADR_REG_MAC );
udelay ( 10 );
/* Write data */
EFAB_POPULATE_DWORD_1 ( reg, GM_MGMT_CTL, value );
efab->mac_op->mac_writel ( efab, &reg, GM_MII_MGMT_CTL_REG_MAC );
/* Wait for data to be written */
mentormac_gmii_wait ( efab );
out:
/* Restore efab->port */
efab->port = save_port;
}
/**
* Read a GMII register
*
*/
static int mentormac_mdio_read ( struct efab_nic *efab, int phy_id,
int location ) {
efab_dword_t reg;
int value = 0xffff;
int save_port;
/* Mentor MAC connects both PHYs to MAC 0 */
save_port = efab->port;
efab->port = 0;
/* Check MII not currently being accessed */
if ( ! mentormac_gmii_wait ( efab ) )
goto out;
/* Write the address register */
EFAB_POPULATE_DWORD_2 ( reg,
GM_MGMT_PHY_ADDR, phy_id,
GM_MGMT_REG_ADDR, location );
efab->mac_op->mac_writel ( efab, &reg, GM_MII_MGMT_ADR_REG_MAC );
udelay ( 10 );
/* Request data to be read */
EFAB_POPULATE_DWORD_1 ( reg, GM_MGMT_RD_CYC, 1 );
efab->mac_op->mac_writel ( efab, &reg, GM_MII_MGMT_CMD_REG_MAC );
/* Wait for data to be become available */
if ( mentormac_gmii_wait ( efab ) ) {
/* Read data */
efab->mac_op->mac_readl ( efab, &reg, GM_MII_MGMT_STAT_REG_MAC );
value = EFAB_DWORD_FIELD ( reg, GM_MGMT_STAT );
EFAB_TRACE ( "Read from GMII %d register %02x, got %04x\n",
phy_id, location, value );
}
/* Signal completion */
EFAB_ZERO_DWORD ( reg );
efab->mac_op->mac_writel ( efab, &reg, GM_MII_MGMT_CMD_REG_MAC );
udelay ( 10 );
out:
/* Restore efab->port */
efab->port = save_port;
return value;
}
/**************************************************************************
*
* EF1002 routines
*
**************************************************************************
*/
/** Control and General Status */
#define EF1_CTR_GEN_STATUS0_REG 0x0
#define EF1_MASTER_EVENTS_LBN 12
#define EF1_MASTER_EVENTS_WIDTH 1
#define EF1_TX_ENGINE_EN_LBN 19
#define EF1_TX_ENGINE_EN_WIDTH 1
#define EF1_RX_ENGINE_EN_LBN 18
#define EF1_RX_ENGINE_EN_WIDTH 1
#define EF1_TURBO2_LBN 17
#define EF1_TURBO2_WIDTH 1
#define EF1_TURBO1_LBN 16
#define EF1_TURBO1_WIDTH 1
#define EF1_TURBO3_LBN 14
#define EF1_TURBO3_WIDTH 1
#define EF1_LB_RESET_LBN 3
#define EF1_LB_RESET_WIDTH 1
#define EF1_MAC_RESET_LBN 2
#define EF1_MAC_RESET_WIDTH 1
#define EF1_CAM_ENABLE_LBN 1
#define EF1_CAM_ENABLE_WIDTH 1
/** IRQ sources */
#define EF1_IRQ_SRC_REG 0x0008
/** IRQ mask */
#define EF1_IRQ_MASK_REG 0x000c
#define EF1_IRQ_PHY1_LBN 11
#define EF1_IRQ_PHY1_WIDTH 1
#define EF1_IRQ_PHY0_LBN 10
#define EF1_IRQ_PHY0_WIDTH 1
#define EF1_IRQ_SERR_LBN 7
#define EF1_IRQ_SERR_WIDTH 1
#define EF1_IRQ_EVQ_LBN 3
#define EF1_IRQ_EVQ_WIDTH 1
/** Event generation */
#define EF1_EVT3_REG 0x38
/** EEPROMaccess */
#define EF1_EEPROM_REG 0x40
#define EF1_EEPROM_SDA_LBN 31
#define EF1_EEPROM_SDA_WIDTH 1
#define EF1_EEPROM_SCL_LBN 30
#define EF1_EEPROM_SCL_WIDTH 1
#define EF1_JTAG_DISCONNECT_LBN 17
#define EF1_JTAG_DISCONNECT_WIDTH 1
#define EF1_EEPROM_LBN 0
#define EF1_EEPROM_WIDTH 32
/** Control register 2 */
#define EF1_CTL2_REG 0x4c
#define EF1_PLL_TRAP_LBN 31
#define EF1_PLL_TRAP_WIDTH 1
#define EF1_MEM_MAP_4MB_LBN 11
#define EF1_MEM_MAP_4MB_WIDTH 1
#define EF1_EV_INTR_CLR_WRITE_LBN 6
#define EF1_EV_INTR_CLR_WRITE_WIDTH 1
#define EF1_BURST_MERGE_LBN 5
#define EF1_BURST_MERGE_WIDTH 1
#define EF1_CLEAR_NULL_PAD_LBN 4
#define EF1_CLEAR_NULL_PAD_WIDTH 1
#define EF1_SW_RESET_LBN 2
#define EF1_SW_RESET_WIDTH 1
#define EF1_INTR_AFTER_EVENT_LBN 1
#define EF1_INTR_AFTER_EVENT_WIDTH 1
/** Event FIFO */
#define EF1_EVENT_FIFO_REG 0x50
/** Event FIFO count */
#define EF1_EVENT_FIFO_COUNT_REG 0x5c
#define EF1_EV_COUNT_LBN 0
#define EF1_EV_COUNT_WIDTH 16
/** TX DMA control and status */
#define EF1_DMA_TX_CSR_REG 0x80
#define EF1_DMA_TX_CSR_CHAIN_EN_LBN 8
#define EF1_DMA_TX_CSR_CHAIN_EN_WIDTH 1
#define EF1_DMA_TX_CSR_ENABLE_LBN 4
#define EF1_DMA_TX_CSR_ENABLE_WIDTH 1
#define EF1_DMA_TX_CSR_INT_EN_LBN 0
#define EF1_DMA_TX_CSR_INT_EN_WIDTH 1
/** RX DMA control and status */
#define EF1_DMA_RX_CSR_REG 0xa0
#define EF1_DMA_RX_ABOVE_1GB_EN_LBN 6
#define EF1_DMA_RX_ABOVE_1GB_EN_WIDTH 1
#define EF1_DMA_RX_BELOW_1MB_EN_LBN 5
#define EF1_DMA_RX_BELOW_1MB_EN_WIDTH 1
#define EF1_DMA_RX_CSR_ENABLE_LBN 0
#define EF1_DMA_RX_CSR_ENABLE_WIDTH 1
/** Level 5 watermark register (in MAC space) */
#define EF1_GMF_L5WM_REG_MAC 0x20
#define EF1_L5WM_LBN 0
#define EF1_L5WM_WIDTH 32
/** MAC clock */
#define EF1_GM_MAC_CLK_REG 0x112000
#define EF1_GM_PORT0_MAC_CLK_LBN 0
#define EF1_GM_PORT0_MAC_CLK_WIDTH 1
#define EF1_GM_PORT1_MAC_CLK_LBN 1
#define EF1_GM_PORT1_MAC_CLK_WIDTH 1
/** TX descriptor FIFO */
#define EF1_TX_DESC_FIFO 0x141000
#define EF1_TX_KER_EVQ_LBN 80
#define EF1_TX_KER_EVQ_WIDTH 12
#define EF1_TX_KER_IDX_LBN 64
#define EF1_TX_KER_IDX_WIDTH 16
#define EF1_TX_KER_MODE_LBN 63
#define EF1_TX_KER_MODE_WIDTH 1
#define EF1_TX_KER_PORT_LBN 60
#define EF1_TX_KER_PORT_WIDTH 1
#define EF1_TX_KER_CONT_LBN 56
#define EF1_TX_KER_CONT_WIDTH 1
#define EF1_TX_KER_BYTE_CNT_LBN 32
#define EF1_TX_KER_BYTE_CNT_WIDTH 24
#define EF1_TX_KER_BUF_ADR_LBN 0
#define EF1_TX_KER_BUF_ADR_WIDTH 32
/** TX descriptor FIFO flush */
#define EF1_TX_DESC_FIFO_FLUSH 0x141ffc
/** RX descriptor FIFO */
#define EF1_RX_DESC_FIFO 0x145000
#define EF1_RX_KER_EVQ_LBN 48
#define EF1_RX_KER_EVQ_WIDTH 12
#define EF1_RX_KER_IDX_LBN 32
#define EF1_RX_KER_IDX_WIDTH 16
#define EF1_RX_KER_BUF_ADR_LBN 0
#define EF1_RX_KER_BUF_ADR_WIDTH 32
/** RX descriptor FIFO flush */
#define EF1_RX_DESC_FIFO_FLUSH 0x145ffc
/** CAM */
#define EF1_CAM_BASE 0x1c0000
#define EF1_CAM_WTF_DOES_THIS_DO_LBN 0
#define EF1_CAM_WTF_DOES_THIS_DO_WIDTH 32
/** Event queue pointers */
#define EF1_EVQ_PTR_BASE 0x260000
#define EF1_EVQ_SIZE_LBN 29
#define EF1_EVQ_SIZE_WIDTH 2
#define EF1_EVQ_SIZE_4K 3
#define EF1_EVQ_SIZE_2K 2
#define EF1_EVQ_SIZE_1K 1
#define EF1_EVQ_SIZE_512 0
#define EF1_EVQ_BUF_BASE_ID_LBN 0
#define EF1_EVQ_BUF_BASE_ID_WIDTH 29
/* MAC registers */
#define EF1002_MAC_REGBANK 0x110000
#define EF1002_MAC_REGBANK_SIZE 0x1000
#define EF1002_MAC_REG_SIZE 0x08
/** Offset of a MAC register within EF1002 */
#define EF1002_MAC_REG( efab, mac_reg ) \
( EF1002_MAC_REGBANK + \
( (efab)->port * EF1002_MAC_REGBANK_SIZE ) + \
( (mac_reg) * EF1002_MAC_REG_SIZE ) )
/* Event queue entries */
#define EF1_EV_CODE_LBN 20
#define EF1_EV_CODE_WIDTH 8
#define EF1_RX_EV_DECODE 0x01
#define EF1_TX_EV_DECODE 0x02
#define EF1_TIMER_EV_DECODE 0x0b
#define EF1_DRV_GEN_EV_DECODE 0x0f
/* Receive events */
#define EF1_RX_EV_LEN_LBN 48
#define EF1_RX_EV_LEN_WIDTH 16
#define EF1_RX_EV_PORT_LBN 17
#define EF1_RX_EV_PORT_WIDTH 3
#define EF1_RX_EV_OK_LBN 16
#define EF1_RX_EV_OK_WIDTH 1
#define EF1_RX_EV_IDX_LBN 0
#define EF1_RX_EV_IDX_WIDTH 16
/* Transmit events */
#define EF1_TX_EV_PORT_LBN 17
#define EF1_TX_EV_PORT_WIDTH 3
#define EF1_TX_EV_OK_LBN 16
#define EF1_TX_EV_OK_WIDTH 1
#define EF1_TX_EV_IDX_LBN 0
#define EF1_TX_EV_IDX_WIDTH 16
/* forward decleration */
static struct efab_mac_operations ef1002_mac_operations;
/* I2C ID of the EEPROM */
#define EF1_EEPROM_I2C_ID 0x50
/* Offset of MAC address within EEPROM */
#define EF1_EEPROM_HWADDR_OFFSET 0x0
/**
* Write dword to EF1002 register
*
*/
static inline void ef1002_writel ( struct efab_nic *efab, efab_dword_t *value,
unsigned int reg ) {
EFAB_REGDUMP ( "Writing register %x with " EFAB_DWORD_FMT "\n",
reg, EFAB_DWORD_VAL ( *value ) );
writel ( value->u32[0], efab->membase + reg );
}
/**
* Read dword from an EF1002 register
*
*/
static inline void ef1002_readl ( struct efab_nic *efab, efab_dword_t *value,
unsigned int reg ) {
value->u32[0] = readl ( efab->membase + reg );
EFAB_REGDUMP ( "Read from register %x, got " EFAB_DWORD_FMT "\n",
reg, EFAB_DWORD_VAL ( *value ) );
}
/**
* Read dword from an EF1002 register, silently
*
*/
static inline void ef1002_readl_silent ( struct efab_nic *efab,
efab_dword_t *value,
unsigned int reg ) {
value->u32[0] = readl ( efab->membase + reg );
}
/**
* Get memory base
*
*/
static void ef1002_get_membase ( struct efab_nic *efab ) {
unsigned long membase_phys;
membase_phys = pci_bar_start ( efab->pci, PCI_BASE_ADDRESS_0 );
efab->membase = ioremap ( membase_phys, 0x800000 );
}
/** PCI registers to backup/restore over a device reset */
static const unsigned int efab_pci_reg_addr[] = {
PCI_COMMAND, 0x0c /* PCI_CACHE_LINE_SIZE */,
PCI_BASE_ADDRESS_0, PCI_BASE_ADDRESS_1, PCI_BASE_ADDRESS_2,
PCI_BASE_ADDRESS_3, PCI_ROM_ADDRESS, PCI_INTERRUPT_LINE,
};
/** Number of registers in efab_pci_reg_addr */
#define EFAB_NUM_PCI_REG \
( sizeof ( efab_pci_reg_addr ) / sizeof ( efab_pci_reg_addr[0] ) )
/** PCI configuration space backup */
struct efab_pci_reg {
uint32_t reg[EFAB_NUM_PCI_REG];
};
/*
* I2C interface and EEPROM
*
*/
static unsigned long ef1002_i2c_bits[] = {
[I2C_BIT_SCL] = ( 1 << 30 ),
[I2C_BIT_SDA] = ( 1 << 31 ),
};
static void ef1002_i2c_write_bit ( struct bit_basher *basher,
unsigned int bit_id, unsigned long data ) {
struct efab_nic *efab = container_of ( basher, struct efab_nic,
ef1002_i2c.basher );
unsigned long mask;
efab_dword_t reg;
mask = ef1002_i2c_bits[bit_id];
efab->ef1002_i2c_outputs &= ~mask;
efab->ef1002_i2c_outputs |= ( data & mask );
EFAB_POPULATE_DWORD_1 ( reg, EF1_EEPROM, efab->ef1002_i2c_outputs );
ef1002_writel ( efab, &reg, EF1_EEPROM_REG );
}
static int ef1002_i2c_read_bit ( struct bit_basher *basher,
unsigned int bit_id ) {
struct efab_nic *efab = container_of ( basher, struct efab_nic,
ef1002_i2c.basher );
unsigned long mask;
efab_dword_t reg;
mask = ef1002_i2c_bits[bit_id];
ef1002_readl ( efab, &reg, EF1_EEPROM_REG );
return ( EFAB_DWORD_FIELD ( reg, EF1_EEPROM ) & mask );
}
static struct bit_basher_operations ef1002_basher_ops = {
.read = ef1002_i2c_read_bit,
.write = ef1002_i2c_write_bit,
};
static void ef1002_init_eeprom ( struct efab_nic *efab ) {
init_i2c_bit_basher ( &efab->ef1002_i2c,
&ef1002_basher_ops );
init_i2c_eeprom ( &efab->ef1002_eeprom, EF1_EEPROM_I2C_ID );
}
/**
* Reset device
*
*/
static int ef1002_reset ( struct efab_nic *efab ) {
struct efab_pci_reg pci_reg;
struct pci_device *pci_dev = efab->pci;
efab_dword_t reg;
unsigned int i;
uint32_t tmp;
/* Back up PCI configuration registers */
for ( i = 0 ; i < EFAB_NUM_PCI_REG ; i++ ) {
pci_read_config_dword ( pci_dev, efab_pci_reg_addr[i],
&pci_reg.reg[i] );
}
/* Reset the whole device. */
EFAB_POPULATE_DWORD_1 ( reg, EF1_SW_RESET, 1 );
ef1002_writel ( efab, &reg, EF1_CTL2_REG );
mdelay ( 200 );
/* Restore PCI configuration space */
for ( i = 0 ; i < EFAB_NUM_PCI_REG ; i++ ) {
pci_write_config_dword ( pci_dev, efab_pci_reg_addr[i],
pci_reg.reg[i] );
}
/* Verify PCI configuration space */
for ( i = 0 ; i < EFAB_NUM_PCI_REG ; i++ ) {
pci_read_config_dword ( pci_dev, efab_pci_reg_addr[i], &tmp );
if ( tmp != pci_reg.reg[i] ) {
EFAB_LOG ( "PCI restore failed on register %02x "
"(is %08lx, should be %08lx); reboot\n",
i, tmp, pci_reg.reg[i] );
return 0;
}
}
/* Verify device reset complete */
ef1002_readl ( efab, &reg, EF1_CTR_GEN_STATUS0_REG );
if ( EFAB_DWORD_IS_ALL_ONES ( reg ) ) {
EFAB_ERR ( "Reset failed\n" );
return 0;
}
return 1;
}
/**
* Initialise NIC
*
*/
static int ef1002_init_nic ( struct efab_nic *efab ) {
efab_dword_t reg;
/* patch in the MAC operations */
efab->mac_op = &ef1002_mac_operations;
/* No idea what CAM is, but the 'datasheet' says that we have
* to write these values in at start of day
*/
EFAB_POPULATE_DWORD_1 ( reg, EF1_CAM_WTF_DOES_THIS_DO, 0x6 );
ef1002_writel ( efab, &reg, EF1_CAM_BASE + 0x20018 );
udelay ( 1000 );
EFAB_POPULATE_DWORD_1 ( reg, EF1_CAM_WTF_DOES_THIS_DO, 0x01000000 );
ef1002_writel ( efab, &reg, EF1_CAM_BASE + 0x00018 );
udelay ( 1000 );
/* General control register 0 */
ef1002_readl ( efab, &reg, EF1_CTR_GEN_STATUS0_REG );
EFAB_SET_DWORD_FIELD ( reg, EF1_MASTER_EVENTS, 0 );
EFAB_SET_DWORD_FIELD ( reg, EF1_TX_ENGINE_EN, 0 );
EFAB_SET_DWORD_FIELD ( reg, EF1_RX_ENGINE_EN, 0 );
EFAB_SET_DWORD_FIELD ( reg, EF1_TURBO2, 1 );
EFAB_SET_DWORD_FIELD ( reg, EF1_TURBO1, 1 );
EFAB_SET_DWORD_FIELD ( reg, EF1_TURBO3, 1 );
EFAB_SET_DWORD_FIELD ( reg, EF1_CAM_ENABLE, 1 );
ef1002_writel ( efab, &reg, EF1_CTR_GEN_STATUS0_REG );
udelay ( 1000 );
/* General control register 2 */
ef1002_readl ( efab, &reg, EF1_CTL2_REG );
EFAB_SET_DWORD_FIELD ( reg, EF1_PLL_TRAP, 1 );
EFAB_SET_DWORD_FIELD ( reg, EF1_MEM_MAP_4MB, 0 );
EFAB_SET_DWORD_FIELD ( reg, EF1_EV_INTR_CLR_WRITE, 0 );
EFAB_SET_DWORD_FIELD ( reg, EF1_BURST_MERGE, 0 );
EFAB_SET_DWORD_FIELD ( reg, EF1_CLEAR_NULL_PAD, 1 );
EFAB_SET_DWORD_FIELD ( reg, EF1_INTR_AFTER_EVENT, 1 );
ef1002_writel ( efab, &reg, EF1_CTL2_REG );
udelay ( 1000 );
/* Enable RX DMA */
ef1002_readl ( efab, &reg, EF1_DMA_RX_CSR_REG );
EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_RX_CSR_ENABLE, 1 );
EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_RX_BELOW_1MB_EN, 1 );
EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_RX_ABOVE_1GB_EN, 1 );
ef1002_writel ( efab, &reg, EF1_DMA_RX_CSR_REG );
udelay ( 1000 );
/* Enable TX DMA */
ef1002_readl ( efab, &reg, EF1_DMA_TX_CSR_REG );
EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_TX_CSR_CHAIN_EN, 1 );
EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_TX_CSR_ENABLE, 0 /* ?? */ );
EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_TX_CSR_INT_EN, 0 /* ?? */ );
ef1002_writel ( efab, &reg, EF1_DMA_TX_CSR_REG );
udelay ( 1000 );
/* Disconnect the JTAG chain. Read-modify-write is impossible
* on the I2C control bits, since reading gives the state of
* the line inputs rather than the last written state.
*/
ef1002_readl ( efab, &reg, EF1_EEPROM_REG );
EFAB_SET_DWORD_FIELD ( reg, EF1_EEPROM_SDA, 1 );
EFAB_SET_DWORD_FIELD ( reg, EF1_EEPROM_SCL, 1 );
EFAB_SET_DWORD_FIELD ( reg, EF1_JTAG_DISCONNECT, 1 );
ef1002_writel ( efab, &reg, EF1_EEPROM_REG );
udelay ( 10 );
/* Flush descriptor queues */
EFAB_ZERO_DWORD ( reg );
ef1002_writel ( efab, &reg, EF1_RX_DESC_FIFO_FLUSH );
ef1002_writel ( efab, &reg, EF1_TX_DESC_FIFO_FLUSH );
wmb();
udelay ( 10000 );
/* Reset MAC */
efab->mac_op->reset ( efab );
/* Attach I2C bus */
ef1002_init_eeprom ( efab );
return 1;
}
/**
* Read MAC address from EEPROM
*
*/
static int ef1002_read_eeprom ( struct efab_nic *efab ) {
struct i2c_interface *i2c = &efab->ef1002_i2c.i2c;
struct i2c_device *i2cdev = &efab->ef1002_eeprom;
if ( i2c->read ( i2c, i2cdev, EF1_EEPROM_HWADDR_OFFSET,
efab->mac_addr, sizeof ( efab->mac_addr ) ) != 0 )
return 0;
efab->mac_addr[ETH_ALEN-1] += efab->port;
return 1;
}
/** RX descriptor */
typedef efab_qword_t ef1002_rx_desc_t;
/**
* Build RX descriptor
*
*/
static void ef1002_build_rx_desc ( struct efab_nic *efab,
struct efab_rx_buf *rx_buf ) {
ef1002_rx_desc_t rxd;
EFAB_POPULATE_QWORD_3 ( rxd,
EF1_RX_KER_EVQ, 0,
EF1_RX_KER_IDX, rx_buf->id,
EF1_RX_KER_BUF_ADR,
virt_to_bus ( rx_buf->addr ) );
ef1002_writel ( efab, &rxd.dword[0], EF1_RX_DESC_FIFO + 0 );
wmb();
ef1002_writel ( efab, &rxd.dword[1], EF1_RX_DESC_FIFO + 4 );
udelay ( 10 );
}
/**
* Update RX descriptor write pointer
*
*/
static void ef1002_notify_rx_desc ( struct efab_nic *efab __unused ) {
/* Nothing to do */
}
/** TX descriptor */
typedef efab_oword_t ef1002_tx_desc_t;
/**
* Build TX descriptor
*
*/
static void ef1002_build_tx_desc ( struct efab_nic *efab,
struct efab_tx_buf *tx_buf ) {
ef1002_tx_desc_t txd;
EFAB_POPULATE_OWORD_7 ( txd,
EF1_TX_KER_EVQ, 0,
EF1_TX_KER_IDX, tx_buf->id,
EF1_TX_KER_MODE, 0 /* IP mode */,
EF1_TX_KER_PORT, efab->port,
EF1_TX_KER_CONT, 0,
EF1_TX_KER_BYTE_CNT, tx_buf->len,
EF1_TX_KER_BUF_ADR,
virt_to_bus ( tx_buf->addr ) );
ef1002_writel ( efab, &txd.dword[0], EF1_TX_DESC_FIFO + 0 );
ef1002_writel ( efab, &txd.dword[1], EF1_TX_DESC_FIFO + 4 );
wmb();
ef1002_writel ( efab, &txd.dword[2], EF1_TX_DESC_FIFO + 8 );
udelay ( 10 );
}
/**
* Update TX descriptor write pointer
*
*/
static void ef1002_notify_tx_desc ( struct efab_nic *efab __unused ) {
/* Nothing to do */
}
/** An event */
typedef efab_qword_t ef1002_event_t;
/**
* Retrieve event from event queue
*
*/
static int ef1002_fetch_event ( struct efab_nic *efab,
struct efab_event *event ) {
efab_dword_t reg;
int ev_code;
int words;
/* Check event FIFO depth */
ef1002_readl_silent ( efab, &reg, EF1_EVENT_FIFO_COUNT_REG );
words = EFAB_DWORD_FIELD ( reg, EF1_EV_COUNT );
if ( ! words )
return 0;
/* Read event data */
ef1002_readl ( efab, &reg, EF1_EVENT_FIFO_REG );
DBG ( "Event is " EFAB_DWORD_FMT "\n", EFAB_DWORD_VAL ( reg ) );
/* Decode event */
ev_code = EFAB_DWORD_FIELD ( reg, EF1_EV_CODE );
event->drop = 0;
switch ( ev_code ) {
case EF1_TX_EV_DECODE:
event->type = EFAB_EV_TX;
break;
case EF1_RX_EV_DECODE:
event->type = EFAB_EV_RX;
event->rx_id = EFAB_DWORD_FIELD ( reg, EF1_RX_EV_IDX );
/* RX len not available via event FIFO */
event->rx_len = ETH_FRAME_LEN;
break;
case EF1_TIMER_EV_DECODE:
/* These are safe to ignore. We seem to get some at
* start of day, presumably due to the timers starting
* up with random contents.
*/
event->type = EFAB_EV_NONE;
break;
default:
EFAB_ERR ( "Unknown event type %d\n", ev_code );
event->type = EFAB_EV_NONE;
}
/* Clear any pending interrupts */
ef1002_readl ( efab, &reg, EF1_IRQ_SRC_REG );
return 1;
}
/**
* Enable/disable interrupts
*
*/
static void ef1002_mask_irq ( struct efab_nic *efab, int enabled ) {
efab_dword_t irq_mask;
EFAB_POPULATE_DWORD_2 ( irq_mask,
EF1_IRQ_SERR, enabled,
EF1_IRQ_EVQ, enabled );
ef1002_writel ( efab, &irq_mask, EF1_IRQ_MASK_REG );
}
/**
* Generate interrupt
*
*/
static void ef1002_generate_irq ( struct efab_nic *efab ) {
ef1002_event_t test_event;
EFAB_POPULATE_QWORD_1 ( test_event,
EF1_EV_CODE, EF1_DRV_GEN_EV_DECODE );
ef1002_writel ( efab, &test_event.dword[0], EF1_EVT3_REG );
}
/**
* Write dword to an EF1002 MAC register
*
*/
static void ef1002_mac_writel ( struct efab_nic *efab,
efab_dword_t *value, unsigned int mac_reg ) {
ef1002_writel ( efab, value, EF1002_MAC_REG ( efab, mac_reg ) );
}
/**
* Read dword from an EF1002 MAC register
*
*/
static void ef1002_mac_readl ( struct efab_nic *efab,
efab_dword_t *value, unsigned int mac_reg ) {
ef1002_readl ( efab, value, EF1002_MAC_REG ( efab, mac_reg ) );
}
/**
* Initialise MAC
*
*/
static int ef1002_init_mac ( struct efab_nic *efab ) {
static struct efab_mentormac_parameters ef1002_mentormac_params = {
.gmf_cfgfrth = 0x13,
.gmf_cfgftth = 0x10,
.gmf_cfghwmft = 0x555,
.gmf_cfghwm = 0x2a,
.gmf_cfglwm = 0x15,
};
efab_dword_t reg;
unsigned int mac_clk;
/* Initialise PHY */
alaska_init ( efab );
/* Initialise MAC */
mentormac_init ( efab, &ef1002_mentormac_params );
/* Write Level 5 watermark register */
EFAB_POPULATE_DWORD_1 ( reg, EF1_L5WM, 0x10040000 );
efab->mac_op->mac_writel ( efab, &reg, EF1_GMF_L5WM_REG_MAC );
udelay ( 10 );
/* Set MAC clock speed */
ef1002_readl ( efab, &reg, EF1_GM_MAC_CLK_REG );
mac_clk = ( efab->link_options & LPA_1000 ) ? 0 : 1;
if ( efab->port == 0 ) {
EFAB_SET_DWORD_FIELD ( reg, EF1_GM_PORT0_MAC_CLK, mac_clk );
} else {
EFAB_SET_DWORD_FIELD ( reg, EF1_GM_PORT1_MAC_CLK, mac_clk );
}
ef1002_writel ( efab, &reg, EF1_GM_MAC_CLK_REG );
udelay ( 10 );
return 1;
}
/**
* Reset MAC
*
*/
static int ef1002_reset_mac ( struct efab_nic *efab ) {
mentormac_reset ( efab );
return 1;
}
/** MDIO write */
static void ef1002_mdio_write ( struct efab_nic *efab, int location,
int value ) {
mentormac_mdio_write ( efab, efab->port + 2, location, value );
}
/** MDIO read */
static int ef1002_mdio_read ( struct efab_nic *efab, int location ) {
return mentormac_mdio_read ( efab, efab->port + 2, location );
}
static struct efab_operations ef1002_operations = {
.get_membase = ef1002_get_membase,
.reset = ef1002_reset,
.init_nic = ef1002_init_nic,
.read_eeprom = ef1002_read_eeprom,
.build_rx_desc = ef1002_build_rx_desc,
.notify_rx_desc = ef1002_notify_rx_desc,
.build_tx_desc = ef1002_build_tx_desc,
.notify_tx_desc = ef1002_notify_tx_desc,
.fetch_event = ef1002_fetch_event,
.mask_irq = ef1002_mask_irq,
.generate_irq = ef1002_generate_irq,
.mdio_write = ef1002_mdio_write,
.mdio_read = ef1002_mdio_read,
};
static struct efab_mac_operations ef1002_mac_operations = {
.mac_writel = ef1002_mac_writel,
.mac_readl = ef1002_mac_readl,
.init = ef1002_init_mac,
.reset = ef1002_reset_mac,
};
/**************************************************************************
*
* Falcon routines
*
**************************************************************************
*/
/* I/O BAR address register */
#define FCN_IOM_IND_ADR_REG 0x0
/* I/O BAR data register */
#define FCN_IOM_IND_DAT_REG 0x4
/* Interrupt enable register */
#define FCN_INT_EN_REG_KER 0x0010
#define FCN_MEM_PERR_INT_EN_KER_LBN 5
#define FCN_MEM_PERR_INT_EN_KER_WIDTH 1
#define FCN_KER_INT_CHAR_LBN 4
#define FCN_KER_INT_CHAR_WIDTH 1
#define FCN_KER_INT_KER_LBN 3
#define FCN_KER_INT_KER_WIDTH 1
#define FCN_ILL_ADR_ERR_INT_EN_KER_LBN 2
#define FCN_ILL_ADR_ERR_INT_EN_KER_WIDTH 1
#define FCN_SRM_PERR_INT_EN_KER_LBN 1
#define FCN_SRM_PERR_INT_EN_KER_WIDTH 1
#define FCN_DRV_INT_EN_KER_LBN 0
#define FCN_DRV_INT_EN_KER_WIDTH 1
/* Interrupt status register */
#define FCN_INT_ADR_REG_KER 0x0030
#define FCN_INT_ADR_KER_LBN 0
#define FCN_INT_ADR_KER_WIDTH EFAB_DMA_TYPE_WIDTH ( 64 )
/* Interrupt acknowledge register */
#define FCN_INT_ACK_KER_REG 0x0050
/* SPI host command register */
#define FCN_EE_SPI_HCMD_REG_KER 0x0100
#define FCN_EE_SPI_HCMD_CMD_EN_LBN 31
#define FCN_EE_SPI_HCMD_CMD_EN_WIDTH 1
#define FCN_EE_WR_TIMER_ACTIVE_LBN 28
#define FCN_EE_WR_TIMER_ACTIVE_WIDTH 1
#define FCN_EE_SPI_HCMD_SF_SEL_LBN 24
#define FCN_EE_SPI_HCMD_SF_SEL_WIDTH 1
#define FCN_EE_SPI_EEPROM 0
#define FCN_EE_SPI_FLASH 1
#define FCN_EE_SPI_HCMD_DABCNT_LBN 16
#define FCN_EE_SPI_HCMD_DABCNT_WIDTH 5
#define FCN_EE_SPI_HCMD_READ_LBN 15
#define FCN_EE_SPI_HCMD_READ_WIDTH 1
#define FCN_EE_SPI_READ 1
#define FCN_EE_SPI_WRITE 0
#define FCN_EE_SPI_HCMD_DUBCNT_LBN 12
#define FCN_EE_SPI_HCMD_DUBCNT_WIDTH 2
#define FCN_EE_SPI_HCMD_ADBCNT_LBN 8
#define FCN_EE_SPI_HCMD_ADBCNT_WIDTH 2
#define FCN_EE_SPI_HCMD_ENC_LBN 0
#define FCN_EE_SPI_HCMD_ENC_WIDTH 8
/* SPI host address register */
#define FCN_EE_SPI_HADR_REG_KER 0x0110
#define FCN_EE_SPI_HADR_DUBYTE_LBN 24
#define FCN_EE_SPI_HADR_DUBYTE_WIDTH 8
#define FCN_EE_SPI_HADR_ADR_LBN 0
#define FCN_EE_SPI_HADR_ADR_WIDTH 24
/* SPI host data register */
#define FCN_EE_SPI_HDATA_REG_KER 0x0120
#define FCN_EE_SPI_HDATA3_LBN 96
#define FCN_EE_SPI_HDATA3_WIDTH 32
#define FCN_EE_SPI_HDATA2_LBN 64
#define FCN_EE_SPI_HDATA2_WIDTH 32
#define FCN_EE_SPI_HDATA1_LBN 32
#define FCN_EE_SPI_HDATA1_WIDTH 32
#define FCN_EE_SPI_HDATA0_LBN 0
#define FCN_EE_SPI_HDATA0_WIDTH 32
/* VPI configuration register */
#define FCN_VPD_CONFIG_REG_KER 0x0140
#define FCN_VPD_9BIT_LBN 1
#define FCN_VPD_9BIT_WIDTH 1
/* NIC status register */
#define FCN_NIC_STAT_REG 0x0200
#define ONCHIP_SRAM_LBN 16
#define ONCHIP_SRAM_WIDTH 1
#define SF_PRST_LBN 9
#define SF_PRST_WIDTH 1
#define EE_PRST_LBN 8
#define EE_PRST_WIDTH 1
#define EE_STRAP_LBN 7
#define EE_STRAP_WIDTH 1
#define PCI_PCIX_MODE_LBN 4
#define PCI_PCIX_MODE_WIDTH 3
#define PCI_PCIX_MODE_PCI33_DECODE 0
#define PCI_PCIX_MODE_PCI66_DECODE 1
#define PCI_PCIX_MODE_PCIX66_DECODE 5
#define PCI_PCIX_MODE_PCIX100_DECODE 6
#define PCI_PCIX_MODE_PCIX133_DECODE 7
#define STRAP_ISCSI_EN_LBN 3
#define STRAP_ISCSI_EN_WIDTH 1
#define STRAP_PINS_LBN 0
#define STRAP_PINS_WIDTH 3
/* These bit definitions are extrapolated from the list of numerical
* values for STRAP_PINS. If you want a laugh, read the datasheet's
* definition for when bits 2:0 are set to 7.
*/
#define STRAP_10G_LBN 2
#define STRAP_10G_WIDTH 1
#define STRAP_DUAL_PORT_LBN 1
#define STRAP_DUAL_PORT_WIDTH 1
#define STRAP_PCIE_LBN 0
#define STRAP_PCIE_WIDTH 1
/* GPIO control register */
#define FCN_GPIO_CTL_REG_KER 0x0210
#define FCN_FLASH_PRESENT_LBN 7
#define FCN_FLASH_PRESENT_WIDTH 1
#define FCN_EEPROM_PRESENT_LBN 6
#define FCN_EEPROM_PRESENT_WIDTH 1
/* Global control register */
#define FCN_GLB_CTL_REG_KER 0x0220
#define EXT_PHY_RST_CTL_LBN 63
#define EXT_PHY_RST_CTL_WIDTH 1
#define PCIE_SD_RST_CTL_LBN 61
#define PCIE_SD_RST_CTL_WIDTH 1
#define PCIX_RST_CTL_LBN 60
#define PCIX_RST_CTL_WIDTH 1
#define PCIE_STCK_RST_CTL_LBN 59
#define PCIE_STCK_RST_CTL_WIDTH 1
#define PCIE_NSTCK_RST_CTL_LBN 58
#define PCIE_NSTCK_RST_CTL_WIDTH 1
#define PCIE_CORE_RST_CTL_LBN 57
#define PCIE_CORE_RST_CTL_WIDTH 1
#define EE_RST_CTL_LBN 49
#define EE_RST_CTL_WIDTH 1
#define CS_RST_CTL_LBN 48
#define CS_RST_CTL_WIDTH 1
#define RST_EXT_PHY_LBN 31
#define RST_EXT_PHY_WIDTH 1
#define INT_RST_DUR_LBN 4
#define INT_RST_DUR_WIDTH 3
#define EXT_PHY_RST_DUR_LBN 1
#define EXT_PHY_RST_DUR_WIDTH 3
#define SWRST_LBN 0
#define SWRST_WIDTH 1
#define INCLUDE_IN_RESET 0
#define EXCLUDE_FROM_RESET 1
/* FPGA build version */
#define ALTERA_BUILD_REG_KER 0x0300
#define VER_MAJOR_LBN 24
#define VER_MAJOR_WIDTH 8
#define VER_MINOR_LBN 16
#define VER_MINOR_WIDTH 8
#define VER_BUILD_LBN 0
#define VER_BUILD_WIDTH 16
#define VER_ALL_LBN 0
#define VER_ALL_WIDTH 32
/* Timer table for kernel access */
#define FCN_TIMER_CMD_REG_KER 0x420
#define FCN_TIMER_MODE_LBN 12
#define FCN_TIMER_MODE_WIDTH 2
#define FCN_TIMER_MODE_DIS 0
#define FCN_TIMER_MODE_INT_HLDOFF 1
#define FCN_TIMER_VAL_LBN 0
#define FCN_TIMER_VAL_WIDTH 12
/* Receive configuration register */
#define FCN_RX_CFG_REG_KER 0x800
#define FCN_RX_XOFF_EN_LBN 0
#define FCN_RX_XOFF_EN_WIDTH 1
/* SRAM receive descriptor cache configuration register */
#define FCN_SRM_RX_DC_CFG_REG_KER 0x610
#define FCN_SRM_RX_DC_BASE_ADR_LBN 0
#define FCN_SRM_RX_DC_BASE_ADR_WIDTH 21
/* SRAM transmit descriptor cache configuration register */
#define FCN_SRM_TX_DC_CFG_REG_KER 0x620
#define FCN_SRM_TX_DC_BASE_ADR_LBN 0
#define FCN_SRM_TX_DC_BASE_ADR_WIDTH 21
/* Receive filter control register */
#define FCN_RX_FILTER_CTL_REG_KER 0x810
#define FCN_NUM_KER_LBN 24
#define FCN_NUM_KER_WIDTH 2
/* Receive descriptor update register */
#define FCN_RX_DESC_UPD_REG_KER 0x0830
#define FCN_RX_DESC_WPTR_LBN 96
#define FCN_RX_DESC_WPTR_WIDTH 12
#define FCN_RX_DESC_UPD_REG_KER_DWORD ( FCN_RX_DESC_UPD_REG_KER + 12 )
#define FCN_RX_DESC_WPTR_DWORD_LBN 0
#define FCN_RX_DESC_WPTR_DWORD_WIDTH 12
/* Receive descriptor cache configuration register */
#define FCN_RX_DC_CFG_REG_KER 0x840
#define FCN_RX_DC_SIZE_LBN 0
#define FCN_RX_DC_SIZE_WIDTH 2
/* Transmit descriptor update register */
#define FCN_TX_DESC_UPD_REG_KER 0x0a10
#define FCN_TX_DESC_WPTR_LBN 96
#define FCN_TX_DESC_WPTR_WIDTH 12
#define FCN_TX_DESC_UPD_REG_KER_DWORD ( FCN_TX_DESC_UPD_REG_KER + 12 )
#define FCN_TX_DESC_WPTR_DWORD_LBN 0
#define FCN_TX_DESC_WPTR_DWORD_WIDTH 12
/* Transmit descriptor cache configuration register */
#define FCN_TX_DC_CFG_REG_KER 0xa20
#define FCN_TX_DC_SIZE_LBN 0
#define FCN_TX_DC_SIZE_WIDTH 2
/* PHY management transmit data register */
#define FCN_MD_TXD_REG_KER 0xc00
#define FCN_MD_TXD_LBN 0
#define FCN_MD_TXD_WIDTH 16
/* PHY management receive data register */
#define FCN_MD_RXD_REG_KER 0xc10
#define FCN_MD_RXD_LBN 0
#define FCN_MD_RXD_WIDTH 16
/* PHY management configuration & status register */
#define FCN_MD_CS_REG_KER 0xc20
#define FCN_MD_GC_LBN 4
#define FCN_MD_GC_WIDTH 1
#define FCN_MD_RIC_LBN 2
#define FCN_MD_RIC_WIDTH 1
#define FCN_MD_WRC_LBN 0
#define FCN_MD_WRC_WIDTH 1
/* PHY management PHY address register */
#define FCN_MD_PHY_ADR_REG_KER 0xc30
#define FCN_MD_PHY_ADR_LBN 0
#define FCN_MD_PHY_ADR_WIDTH 16
/* PHY management ID register */
#define FCN_MD_ID_REG_KER 0xc40
#define FCN_MD_PRT_ADR_LBN 11
#define FCN_MD_PRT_ADR_WIDTH 5
#define FCN_MD_DEV_ADR_LBN 6
#define FCN_MD_DEV_ADR_WIDTH 5
/* PHY management status & mask register */
#define FCN_MD_STAT_REG_KER 0xc50
#define FCN_MD_BSY_LBN 0
#define FCN_MD_BSY_WIDTH 1
/* Port 0 and 1 MAC control registers */
#define FCN_MAC0_CTRL_REG_KER 0xc80
#define FCN_MAC1_CTRL_REG_KER 0xc90
#define FCN_MAC_XOFF_VAL_LBN 16
#define FCN_MAC_XOFF_VAL_WIDTH 16
#define FCN_MAC_BCAD_ACPT_LBN 4
#define FCN_MAC_BCAD_ACPT_WIDTH 1
#define FCN_MAC_UC_PROM_LBN 3
#define FCN_MAC_UC_PROM_WIDTH 1
#define FCN_MAC_LINK_STATUS_LBN 2
#define FCN_MAC_LINK_STATUS_WIDTH 1
#define FCN_MAC_SPEED_LBN 0
#define FCN_MAC_SPEED_WIDTH 2
/* GMAC registers */
#define FALCON_GMAC_REGBANK 0xe00
#define FALCON_GMAC_REGBANK_SIZE 0x200
#define FALCON_GMAC_REG_SIZE 0x10
/* XGMAC registers */
#define FALCON_XMAC_REGBANK 0x1200
#define FALCON_XMAC_REGBANK_SIZE 0x200
#define FALCON_XMAC_REG_SIZE 0x10
/* XGMAC address register low */
#define FCN_XM_ADR_LO_REG_MAC 0x00
#define FCN_XM_ADR_3_LBN 24
#define FCN_XM_ADR_3_WIDTH 8
#define FCN_XM_ADR_2_LBN 16
#define FCN_XM_ADR_2_WIDTH 8
#define FCN_XM_ADR_1_LBN 8
#define FCN_XM_ADR_1_WIDTH 8
#define FCN_XM_ADR_0_LBN 0
#define FCN_XM_ADR_0_WIDTH 8
/* XGMAC address register high */
#define FCN_XM_ADR_HI_REG_MAC 0x01
#define FCN_XM_ADR_5_LBN 8
#define FCN_XM_ADR_5_WIDTH 8
#define FCN_XM_ADR_4_LBN 0
#define FCN_XM_ADR_4_WIDTH 8
/* XGMAC global configuration - port 0*/
#define FCN_XM_GLB_CFG_REG_MAC 0x02
#define FCN_XM_RX_STAT_EN_LBN 11
#define FCN_XM_RX_STAT_EN_WIDTH 1
#define FCN_XM_TX_STAT_EN_LBN 10
#define FCN_XM_TX_STAT_EN_WIDTH 1
#define FCN_XM_RX_JUMBO_MODE_LBN 6
#define FCN_XM_RX_JUMBO_MODE_WIDTH 1
#define FCN_XM_CORE_RST_LBN 0
#define FCN_XM_CORE_RST_WIDTH 1
/* XGMAC transmit configuration - port 0 */
#define FCN_XM_TX_CFG_REG_MAC 0x03
#define FCN_XM_IPG_LBN 16
#define FCN_XM_IPG_WIDTH 4
#define FCN_XM_FCNTL_LBN 10
#define FCN_XM_FCNTL_WIDTH 1
#define FCN_XM_TXCRC_LBN 8
#define FCN_XM_TXCRC_WIDTH 1
#define FCN_XM_AUTO_PAD_LBN 5
#define FCN_XM_AUTO_PAD_WIDTH 1
#define FCN_XM_TX_PRMBL_LBN 2
#define FCN_XM_TX_PRMBL_WIDTH 1
#define FCN_XM_TXEN_LBN 1
#define FCN_XM_TXEN_WIDTH 1
/* XGMAC receive configuration - port 0 */
#define FCN_XM_RX_CFG_REG_MAC 0x04
#define FCN_XM_PASS_CRC_ERR_LBN 25
#define FCN_XM_PASS_CRC_ERR_WIDTH 1
#define FCN_XM_AUTO_DEPAD_LBN 8
#define FCN_XM_AUTO_DEPAD_WIDTH 1
#define FCN_XM_RXEN_LBN 1
#define FCN_XM_RXEN_WIDTH 1
/* XGMAC transmit parameter register */
#define FCN_XM_TX_PARAM_REG_MAC 0x0d
#define FCN_XM_TX_JUMBO_MODE_LBN 31
#define FCN_XM_TX_JUMBO_MODE_WIDTH 1
#define FCN_XM_MAX_TX_FRM_SIZE_LBN 16
#define FCN_XM_MAX_TX_FRM_SIZE_WIDTH 14
/* XGMAC receive parameter register */
#define FCN_XM_RX_PARAM_REG_MAC 0x0e
#define FCN_XM_MAX_RX_FRM_SIZE_LBN 0
#define FCN_XM_MAX_RX_FRM_SIZE_WIDTH 14
/* XAUI XGXS core status register */
#define FCN_XX_ALIGN_DONE_LBN 20
#define FCN_XX_ALIGN_DONE_WIDTH 1
#define FCN_XX_CORE_STAT_REG_MAC 0x16
#define FCN_XX_SYNC_STAT_LBN 16
#define FCN_XX_SYNC_STAT_WIDTH 4
#define FCN_XX_SYNC_STAT_DECODE_SYNCED 0xf
#define FCN_XX_COMMA_DET_LBN 12
#define FCN_XX_COMMA_DET_WIDTH 4
#define FCN_XX_COMMA_DET_RESET 0xf
/* XGXS/XAUI powerdown/reset register */
#define FCN_XX_PWR_RST_REG_MAC 0x10
#define FCN_XX_RSTXGXSRX_EN_LBN 2
#define FCN_XX_RSTXGXSRX_EN_WIDTH 1
#define FCN_XX_RSTXGXSTX_EN_LBN 1
#define FCN_XX_RSTXGXSTX_EN_WIDTH 1
#define FCN_XX_RST_XX_EN_LBN 0
#define FCN_XX_RST_XX_EN_WIDTH 1
/* Receive descriptor pointer table */
#define FCN_RX_DESC_PTR_TBL_KER 0x11800
#define FCN_RX_DESCQ_BUF_BASE_ID_LBN 36
#define FCN_RX_DESCQ_BUF_BASE_ID_WIDTH 20
#define FCN_RX_DESCQ_EVQ_ID_LBN 24
#define FCN_RX_DESCQ_EVQ_ID_WIDTH 12
#define FCN_RX_DESCQ_OWNER_ID_LBN 10
#define FCN_RX_DESCQ_OWNER_ID_WIDTH 14
#define FCN_RX_DESCQ_SIZE_LBN 3
#define FCN_RX_DESCQ_SIZE_WIDTH 2
#define FCN_RX_DESCQ_SIZE_4K 3
#define FCN_RX_DESCQ_SIZE_2K 2
#define FCN_RX_DESCQ_SIZE_1K 1
#define FCN_RX_DESCQ_SIZE_512 0
#define FCN_RX_DESCQ_TYPE_LBN 2
#define FCN_RX_DESCQ_TYPE_WIDTH 1
#define FCN_RX_DESCQ_JUMBO_LBN 1
#define FCN_RX_DESCQ_JUMBO_WIDTH 1
#define FCN_RX_DESCQ_EN_LBN 0
#define FCN_RX_DESCQ_EN_WIDTH 1
/* Transmit descriptor pointer table */
#define FCN_TX_DESC_PTR_TBL_KER 0x11900
#define FCN_TX_DESCQ_EN_LBN 88
#define FCN_TX_DESCQ_EN_WIDTH 1
#define FCN_TX_DESCQ_BUF_BASE_ID_LBN 36
#define FCN_TX_DESCQ_BUF_BASE_ID_WIDTH 20
#define FCN_TX_DESCQ_EVQ_ID_LBN 24
#define FCN_TX_DESCQ_EVQ_ID_WIDTH 12
#define FCN_TX_DESCQ_OWNER_ID_LBN 10
#define FCN_TX_DESCQ_OWNER_ID_WIDTH 14
#define FCN_TX_DESCQ_SIZE_LBN 3
#define FCN_TX_DESCQ_SIZE_WIDTH 2
#define FCN_TX_DESCQ_SIZE_4K 3
#define FCN_TX_DESCQ_SIZE_2K 2
#define FCN_TX_DESCQ_SIZE_1K 1
#define FCN_TX_DESCQ_SIZE_512 0
#define FCN_TX_DESCQ_TYPE_LBN 1
#define FCN_TX_DESCQ_TYPE_WIDTH 2
#define FCN_TX_DESCQ_FLUSH_LBN 0
#define FCN_TX_DESCQ_FLUSH_WIDTH 1
/* Event queue pointer */
#define FCN_EVQ_PTR_TBL_KER 0x11a00
#define FCN_EVQ_EN_LBN 23
#define FCN_EVQ_EN_WIDTH 1
#define FCN_EVQ_SIZE_LBN 20
#define FCN_EVQ_SIZE_WIDTH 3
#define FCN_EVQ_SIZE_32K 6
#define FCN_EVQ_SIZE_16K 5
#define FCN_EVQ_SIZE_8K 4
#define FCN_EVQ_SIZE_4K 3
#define FCN_EVQ_SIZE_2K 2
#define FCN_EVQ_SIZE_1K 1
#define FCN_EVQ_SIZE_512 0
#define FCN_EVQ_BUF_BASE_ID_LBN 0
#define FCN_EVQ_BUF_BASE_ID_WIDTH 20
/* Event queue read pointer */
#define FCN_EVQ_RPTR_REG_KER 0x11b00
#define FCN_EVQ_RPTR_LBN 0
#define FCN_EVQ_RPTR_WIDTH 14
#define FCN_EVQ_RPTR_REG_KER_DWORD ( FCN_EVQ_RPTR_REG_KER + 0 )
#define FCN_EVQ_RPTR_DWORD_LBN 0
#define FCN_EVQ_RPTR_DWORD_WIDTH 14
/* Special buffer descriptors */
#define FCN_BUF_FULL_TBL_KER 0x18000
#define FCN_IP_DAT_BUF_SIZE_LBN 50
#define FCN_IP_DAT_BUF_SIZE_WIDTH 1
#define FCN_IP_DAT_BUF_SIZE_8K 1
#define FCN_IP_DAT_BUF_SIZE_4K 0
#define FCN_BUF_ADR_FBUF_LBN 14
#define FCN_BUF_ADR_FBUF_WIDTH 34
#define FCN_BUF_OWNER_ID_FBUF_LBN 0
#define FCN_BUF_OWNER_ID_FBUF_WIDTH 14
/** Offset of a GMAC register within Falcon */
#define FALCON_GMAC_REG( efab, mac_reg ) \
( FALCON_GMAC_REGBANK + \
( (efab)->port * FALCON_GMAC_REGBANK_SIZE ) + \
( (mac_reg) * FALCON_GMAC_REG_SIZE ) )
/** Offset of an XMAC register within Falcon */
#define FALCON_XMAC_REG( efab_port, mac_reg ) \
( FALCON_XMAC_REGBANK + \
( (efab_port)->port * FALCON_XMAC_REGBANK_SIZE ) + \
( (mac_reg) * FALCON_XMAC_REG_SIZE ) )
#define FCN_MAC_DATA_LBN 0
#define FCN_MAC_DATA_WIDTH 32
/* Transmit descriptor */
#define FCN_TX_KER_PORT_LBN 63
#define FCN_TX_KER_PORT_WIDTH 1
#define FCN_TX_KER_BYTE_CNT_LBN 48
#define FCN_TX_KER_BYTE_CNT_WIDTH 14
#define FCN_TX_KER_BUF_ADR_LBN 0
#define FCN_TX_KER_BUF_ADR_WIDTH EFAB_DMA_TYPE_WIDTH ( 46 )
/* Receive descriptor */
#define FCN_RX_KER_BUF_SIZE_LBN 48
#define FCN_RX_KER_BUF_SIZE_WIDTH 14
#define FCN_RX_KER_BUF_ADR_LBN 0
#define FCN_RX_KER_BUF_ADR_WIDTH EFAB_DMA_TYPE_WIDTH ( 46 )
/* Event queue entries */
#define FCN_EV_CODE_LBN 60
#define FCN_EV_CODE_WIDTH 4
#define FCN_RX_IP_EV_DECODE 0
#define FCN_TX_IP_EV_DECODE 2
#define FCN_DRIVER_EV_DECODE 5
/* Receive events */
#define FCN_RX_EV_PKT_OK_LBN 56
#define FCN_RX_EV_PKT_OK_WIDTH 1
#define FCN_RX_PORT_LBN 30
#define FCN_RX_PORT_WIDTH 1
#define FCN_RX_EV_BYTE_CNT_LBN 16
#define FCN_RX_EV_BYTE_CNT_WIDTH 14
#define FCN_RX_EV_DESC_PTR_LBN 0
#define FCN_RX_EV_DESC_PTR_WIDTH 12
/* Transmit events */
#define FCN_TX_EV_DESC_PTR_LBN 0
#define FCN_TX_EV_DESC_PTR_WIDTH 12
/* Fixed special buffer numbers to use */
#define FALCON_EVQ_ID 0
#define FALCON_TXD_ID 1
#define FALCON_RXD_ID 2
#if FALCON_USE_IO_BAR
/* Write dword via the I/O BAR */
static inline void _falcon_writel ( struct efab_nic *efab, uint32_t value,
unsigned int reg ) {
outl ( reg, efab->iobase + FCN_IOM_IND_ADR_REG );
outl ( value, efab->iobase + FCN_IOM_IND_DAT_REG );
}
/* Read dword via the I/O BAR */
static inline uint32_t _falcon_readl ( struct efab_nic *efab,
unsigned int reg ) {
outl ( reg, efab->iobase + FCN_IOM_IND_ADR_REG );
return inl ( efab->iobase + FCN_IOM_IND_DAT_REG );
}
#else /* FALCON_USE_IO_BAR */
#define _falcon_writel( efab, value, reg ) \
writel ( (value), (efab)->membase + (reg) )
#define _falcon_readl( efab, reg ) readl ( (efab)->membase + (reg) )
#endif /* FALCON_USE_IO_BAR */
/**
* Write to a Falcon register
*
*/
static inline void falcon_write ( struct efab_nic *efab, efab_oword_t *value,
unsigned int reg ) {
EFAB_REGDUMP ( "Writing register %x with " EFAB_OWORD_FMT "\n",
reg, EFAB_OWORD_VAL ( *value ) );
_falcon_writel ( efab, value->u32[0], reg + 0 );
_falcon_writel ( efab, value->u32[1], reg + 4 );
_falcon_writel ( efab, value->u32[2], reg + 8 );
_falcon_writel ( efab, value->u32[3], reg + 12 );
wmb();
}
/**
* Write to Falcon SRAM
*
*/
static inline void falcon_write_sram ( struct efab_nic *efab,
efab_qword_t *value,
unsigned int index ) {
unsigned int reg = ( FCN_BUF_FULL_TBL_KER +
( index * sizeof ( *value ) ) );
EFAB_REGDUMP ( "Writing SRAM register %x with " EFAB_QWORD_FMT "\n",
reg, EFAB_QWORD_VAL ( *value ) );
_falcon_writel ( efab, value->u32[0], reg + 0 );
_falcon_writel ( efab, value->u32[1], reg + 4 );
wmb();
}
/**
* Write dword to Falcon register that allows partial writes
*
*/
static inline void falcon_writel ( struct efab_nic *efab, efab_dword_t *value,
unsigned int reg ) {
EFAB_REGDUMP ( "Writing partial register %x with " EFAB_DWORD_FMT "\n",
reg, EFAB_DWORD_VAL ( *value ) );
_falcon_writel ( efab, value->u32[0], reg );
}
/**
* Read from a Falcon register
*
*/
static inline void falcon_read ( struct efab_nic *efab, efab_oword_t *value,
unsigned int reg ) {
value->u32[0] = _falcon_readl ( efab, reg + 0 );
value->u32[1] = _falcon_readl ( efab, reg + 4 );
value->u32[2] = _falcon_readl ( efab, reg + 8 );
value->u32[3] = _falcon_readl ( efab, reg + 12 );
EFAB_REGDUMP ( "Read from register %x, got " EFAB_OWORD_FMT "\n",
reg, EFAB_OWORD_VAL ( *value ) );
}
/**
* Read from Falcon SRAM
*
*/
static inline void falcon_read_sram ( struct efab_nic *efab,
efab_qword_t *value,
unsigned int index ) {
unsigned int reg = ( FCN_BUF_FULL_TBL_KER +
( index * sizeof ( *value ) ) );
value->u32[0] = _falcon_readl ( efab, reg + 0 );
value->u32[1] = _falcon_readl ( efab, reg + 4 );
EFAB_REGDUMP ( "Read from SRAM register %x, got " EFAB_QWORD_FMT "\n",
reg, EFAB_QWORD_VAL ( *value ) );
}
/**
* Read dword from a portion of a Falcon register
*
*/
static inline void falcon_readl ( struct efab_nic *efab, efab_dword_t *value,
unsigned int reg ) {
value->u32[0] = _falcon_readl ( efab, reg );
EFAB_REGDUMP ( "Read from register %x, got " EFAB_DWORD_FMT "\n",
reg, EFAB_DWORD_VAL ( *value ) );
}
/**
* Verified write to Falcon SRAM
*
*/
static inline void falcon_write_sram_verify ( struct efab_nic *efab,
efab_qword_t *value,
unsigned int index ) {
efab_qword_t verify;
falcon_write_sram ( efab, value, index );
udelay ( 1000 );
falcon_read_sram ( efab, &verify, index );
if ( memcmp ( &verify, value, sizeof ( verify ) ) != 0 ) {
EFAB_ERR ( "SRAM index %x failure: wrote " EFAB_QWORD_FMT
" got " EFAB_QWORD_FMT "\n", index,
EFAB_QWORD_VAL ( *value ),
EFAB_QWORD_VAL ( verify ) );
}
}
/**
* Get memory base
*
*/
static void falcon_get_membase ( struct efab_nic *efab ) {
unsigned long membase_phys;
membase_phys = pci_bar_start ( efab->pci, PCI_BASE_ADDRESS_2 );
efab->membase = ioremap ( membase_phys, 0x20000 );
}
#define FCN_DUMP_REG( efab, _reg ) do { \
efab_oword_t reg; \
falcon_read ( efab, &reg, _reg ); \
EFAB_LOG ( #_reg " = " EFAB_OWORD_FMT "\n", \
EFAB_OWORD_VAL ( reg ) ); \
} while ( 0 );
#define FCN_DUMP_MAC_REG( efab, _mac_reg ) do { \
efab_dword_t reg; \
efab->mac_op->mac_readl ( efab, &reg, _mac_reg ); \
EFAB_LOG ( #_mac_reg " = " EFAB_DWORD_FMT "\n", \
EFAB_DWORD_VAL ( reg ) ); \
} while ( 0 );
/**
* Dump register contents (for debugging)
*
* Marked as static inline so that it will not be compiled in if not
* used.
*/
static inline void falcon_dump_regs ( struct efab_nic *efab ) {
FCN_DUMP_REG ( efab, FCN_INT_EN_REG_KER );
FCN_DUMP_REG ( efab, FCN_INT_ADR_REG_KER );
FCN_DUMP_REG ( efab, FCN_GLB_CTL_REG_KER );
FCN_DUMP_REG ( efab, FCN_TIMER_CMD_REG_KER );
FCN_DUMP_REG ( efab, FCN_SRM_RX_DC_CFG_REG_KER );
FCN_DUMP_REG ( efab, FCN_SRM_TX_DC_CFG_REG_KER );
FCN_DUMP_REG ( efab, FCN_RX_FILTER_CTL_REG_KER );
FCN_DUMP_REG ( efab, FCN_RX_DC_CFG_REG_KER );
FCN_DUMP_REG ( efab, FCN_TX_DC_CFG_REG_KER );
FCN_DUMP_REG ( efab, FCN_MAC0_CTRL_REG_KER );
FCN_DUMP_REG ( efab, FCN_MAC1_CTRL_REG_KER );
FCN_DUMP_REG ( efab, FCN_RX_DESC_PTR_TBL_KER );
FCN_DUMP_REG ( efab, FCN_TX_DESC_PTR_TBL_KER );
FCN_DUMP_REG ( efab, FCN_EVQ_PTR_TBL_KER );
FCN_DUMP_MAC_REG ( efab, GM_CFG1_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GM_CFG2_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GM_MAX_FLEN_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GM_MII_MGMT_CFG_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GM_ADR1_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GM_ADR2_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GMF_CFG0_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GMF_CFG1_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GMF_CFG2_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GMF_CFG3_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GMF_CFG4_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GMF_CFG5_REG_MAC );
}
/**
* Create special buffer
*
*/
static void falcon_create_special_buffer ( struct efab_nic *efab,
void *addr, unsigned int index ) {
efab_qword_t buf_desc;
unsigned long dma_addr;
memset ( addr, 0, 4096 );
dma_addr = virt_to_bus ( addr );
EFAB_ASSERT ( ( dma_addr & ( EFAB_BUF_ALIGN - 1 ) ) == 0 );
EFAB_POPULATE_QWORD_3 ( buf_desc,
FCN_IP_DAT_BUF_SIZE, FCN_IP_DAT_BUF_SIZE_4K,
FCN_BUF_ADR_FBUF, ( dma_addr >> 12 ),
FCN_BUF_OWNER_ID_FBUF, 0 );
falcon_write_sram_verify ( efab, &buf_desc, index );
}
/**
* Update event queue read pointer
*
*/
static void falcon_eventq_read_ack ( struct efab_nic *efab ) {
efab_dword_t reg;
EFAB_ASSERT ( efab->eventq_read_ptr < EFAB_EVQ_SIZE );
EFAB_POPULATE_DWORD_1 ( reg, FCN_EVQ_RPTR_DWORD,
efab->eventq_read_ptr );
falcon_writel ( efab, &reg, FCN_EVQ_RPTR_REG_KER_DWORD );
}
/**
* Reset device
*
*/
static int falcon_reset ( struct efab_nic *efab ) {
efab_oword_t glb_ctl_reg_ker;
/* Initiate software reset */
EFAB_POPULATE_OWORD_7 ( glb_ctl_reg_ker,
PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
EE_RST_CTL, EXCLUDE_FROM_RESET,
PCIX_RST_CTL, EXCLUDE_FROM_RESET,
EXT_PHY_RST_DUR, 0x7 /* datasheet recommended */,
SWRST, 1 );
falcon_write ( efab, &glb_ctl_reg_ker, FCN_GLB_CTL_REG_KER );
/* Allow 20ms for reset */
mdelay ( 20 );
/* Check for device reset complete */
falcon_read ( efab, &glb_ctl_reg_ker, FCN_GLB_CTL_REG_KER );
if ( EFAB_OWORD_FIELD ( glb_ctl_reg_ker, SWRST ) != 0 ) {
EFAB_ERR ( "Reset failed\n" );
return 0;
}
return 1;
}
/**
* Wait for SPI command completion
*
*/
static int falcon_spi_wait ( struct efab_nic *efab ) {
efab_oword_t reg;
int count;
count = 0;
do {
udelay ( 100 );
falcon_read ( efab, &reg, FCN_EE_SPI_HCMD_REG_KER );
if ( EFAB_OWORD_FIELD ( reg, FCN_EE_SPI_HCMD_CMD_EN ) == 0 )
return 1;
} while ( ++count < 1000 );
printf ( "Timed out waiting for SPI\n" );
return 0;
}
/**
* Perform SPI read/write
*
*/
static int falcon_spi_rw ( struct spi_bus *bus, struct spi_device *device,
unsigned int command, int address,
const void *data_out, void *data_in, size_t len ) {
struct efab_nic *efab = container_of ( bus, struct efab_nic, spi );
efab_oword_t reg;
/* Program address register */
EFAB_POPULATE_OWORD_1 ( reg, FCN_EE_SPI_HADR_ADR, address );
falcon_write ( efab, &reg, FCN_EE_SPI_HADR_REG_KER );
/* Program data register, if applicable */
if ( data_out ) {
memcpy ( &reg, data_out, len );
falcon_write ( efab, &reg, FCN_EE_SPI_HDATA_REG_KER );
}
/* Issue command */
EFAB_POPULATE_OWORD_7 ( reg,
FCN_EE_SPI_HCMD_CMD_EN, 1,
FCN_EE_SPI_HCMD_SF_SEL, device->slave,
FCN_EE_SPI_HCMD_DABCNT, len,
FCN_EE_SPI_HCMD_READ, ( data_out ?
FCN_EE_SPI_WRITE : FCN_EE_SPI_READ ),
FCN_EE_SPI_HCMD_DUBCNT, 0,
FCN_EE_SPI_HCMD_ADBCNT,
( device->address_len / 8 ),
FCN_EE_SPI_HCMD_ENC, command );
falcon_write ( efab, &reg, FCN_EE_SPI_HCMD_REG_KER );
/* Wait for operation to complete */
if ( ! falcon_spi_wait ( efab ) )
return 0;
/* Read data, if applicable */
if ( data_in ) {
falcon_read ( efab, &reg, FCN_EE_SPI_HDATA_REG_KER );
memcpy ( data_in, &reg, len );
}
return 0;
}
/**
* Initialise SPI bus and devices
*
*/
static void falcon_init_spi ( struct efab_nic *efab ) {
efab_oword_t reg;
int eeprom_9bit;
/* Initialise SPI bus */
efab->spi.rw = falcon_spi_rw;
efab->falcon_eeprom.bus = &efab->spi;
efab->falcon_eeprom.slave = FCN_EE_SPI_EEPROM;
efab->falcon_flash.bus = &efab->spi;
efab->falcon_flash.slave = FCN_EE_SPI_FLASH;
/* Initialise flash if present */
if ( efab->has_flash ) {
DBG ( "Flash is present\n" );
init_at25f1024 ( &efab->falcon_flash );
}
/* Initialise EEPROM if present */
if ( efab->has_eeprom ) {
if ( efab->is_asic ) {
falcon_read ( efab, &reg, FCN_VPD_CONFIG_REG_KER );
eeprom_9bit = EFAB_OWORD_FIELD ( reg, FCN_VPD_9BIT );
} else {
eeprom_9bit = 1;
}
if ( eeprom_9bit ) {
DBG ( "Small EEPROM is present\n" );
init_at25040 ( &efab->falcon_eeprom );
} else {
DBG ( "Large EEPROM is present\n" );
init_mc25xx640 ( &efab->falcon_eeprom );
/* Falcon's SPI interface cannot support a block
size larger than 16, so forcibly reduce it
*/
efab->falcon_eeprom.nvs.block_size = 16;
}
}
}
/** Offset of MAC address within EEPROM or Flash */
#define FALCON_MAC_ADDRESS_OFFSET(port) ( 0x310 + 0x08 * (port) )
static struct nvo_fragment falcon_eeprom_fragments[] = {
{ 0x100, 0x100 },
{ 0, 0 }
};
/**
* Read MAC address from EEPROM
*
*/
static int falcon_read_eeprom ( struct efab_nic *efab ) {
struct nvs_device *nvs;
/* Determine the NVS device containing the MAC address */
nvs = ( efab->has_flash ?
&efab->falcon_flash.nvs : &efab->falcon_eeprom.nvs );
return ( nvs_read ( nvs, FALCON_MAC_ADDRESS_OFFSET ( efab->port ),
efab->mac_addr, sizeof ( efab->mac_addr ) ) == 0 );
}
/** RX descriptor */
typedef efab_qword_t falcon_rx_desc_t;
/**
* Build RX descriptor
*
*/
static void falcon_build_rx_desc ( struct efab_nic *efab,
struct efab_rx_buf *rx_buf ) {
falcon_rx_desc_t *rxd;
rxd = ( ( falcon_rx_desc_t * ) efab->rxd ) + rx_buf->id;
EFAB_POPULATE_QWORD_2 ( *rxd,
FCN_RX_KER_BUF_SIZE, EFAB_DATA_BUF_SIZE,
FCN_RX_KER_BUF_ADR,
virt_to_bus ( rx_buf->addr ) );
}
/**
* Update RX descriptor write pointer
*
*/
static void falcon_notify_rx_desc ( struct efab_nic *efab ) {
efab_dword_t reg;
EFAB_POPULATE_DWORD_1 ( reg, FCN_RX_DESC_WPTR_DWORD,
efab->rx_write_ptr );
falcon_writel ( efab, &reg, FCN_RX_DESC_UPD_REG_KER_DWORD );
}
/** TX descriptor */
typedef efab_qword_t falcon_tx_desc_t;
/**
* Build TX descriptor
*
*/
static void falcon_build_tx_desc ( struct efab_nic *efab,
struct efab_tx_buf *tx_buf ) {
falcon_rx_desc_t *txd;
txd = ( ( falcon_rx_desc_t * ) efab->txd ) + tx_buf->id;
EFAB_POPULATE_QWORD_3 ( *txd,
FCN_TX_KER_PORT, efab->port,
FCN_TX_KER_BYTE_CNT, tx_buf->len,
FCN_TX_KER_BUF_ADR,
virt_to_bus ( tx_buf->addr ) );
}
/**
* Update TX descriptor write pointer
*
*/
static void falcon_notify_tx_desc ( struct efab_nic *efab ) {
efab_dword_t reg;
EFAB_POPULATE_DWORD_1 ( reg, FCN_TX_DESC_WPTR_DWORD,
efab->tx_write_ptr );
falcon_writel ( efab, &reg, FCN_TX_DESC_UPD_REG_KER_DWORD );
}
/** An event */
typedef efab_qword_t falcon_event_t;
/**
* See if an event is present
*
* @v event Falcon event structure
* @ret True An event is pending
* @ret False No event is pending
*
* We check both the high and low dword of the event for all ones. We
* wrote all ones when we cleared the event, and no valid event can
* have all ones in either its high or low dwords. This approach is
* robust against reordering.
*
* Note that using a single 64-bit comparison is incorrect; even
* though the CPU read will be atomic, the DMA write may not be.
*/
static inline int falcon_event_present ( falcon_event_t* event ) {
return ( ! ( EFAB_DWORD_IS_ALL_ONES ( event->dword[0] ) |
EFAB_DWORD_IS_ALL_ONES ( event->dword[1] ) ) );
}
/**
* Retrieve event from event queue
*
*/
static int falcon_fetch_event ( struct efab_nic *efab,
struct efab_event *event ) {
falcon_event_t *evt;
int ev_code;
int rx_port;
/* Check for event */
evt = ( ( falcon_event_t * ) efab->eventq ) + efab->eventq_read_ptr;
if ( !falcon_event_present ( evt ) ) {
/* No event */
return 0;
}
DBG ( "Event is " EFAB_QWORD_FMT "\n", EFAB_QWORD_VAL ( *evt ) );
/* Decode event */
ev_code = EFAB_QWORD_FIELD ( *evt, FCN_EV_CODE );
event->drop = 0;
switch ( ev_code ) {
case FCN_TX_IP_EV_DECODE:
event->type = EFAB_EV_TX;
break;
case FCN_RX_IP_EV_DECODE:
event->type = EFAB_EV_RX;
event->rx_id = EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_DESC_PTR );
event->rx_len = EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_BYTE_CNT );
event->drop = !EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_PKT_OK );
rx_port = EFAB_QWORD_FIELD ( *evt, FCN_RX_PORT );
if ( rx_port != efab->port ) {
/* Ignore packets on the wrong port. We can't
* just set event->type = EFAB_EV_NONE,
* because then the descriptor ring won't get
* refilled.
*/
event->rx_len = 0;
}
break;
case FCN_DRIVER_EV_DECODE:
/* Ignore start-of-day events */
event->type = EFAB_EV_NONE;
break;
default:
EFAB_ERR ( "Unknown event type %d data %08lx\n", ev_code,
EFAB_DWORD_FIELD ( *evt, EFAB_DWORD_0 ) );
event->type = EFAB_EV_NONE;
}
/* Clear event and any pending interrupts */
EFAB_SET_QWORD ( *evt );
falcon_writel ( efab, 0, FCN_INT_ACK_KER_REG );
udelay ( 10 );
/* Increment and update event queue read pointer */
efab->eventq_read_ptr = ( ( efab->eventq_read_ptr + 1 )
% EFAB_EVQ_SIZE );
falcon_eventq_read_ack ( efab );
return 1;
}
/**
* Enable/disable/generate interrupt
*
*/
static inline void falcon_interrupts ( struct efab_nic *efab, int enabled,
int force ) {
efab_oword_t int_en_reg_ker;
EFAB_POPULATE_OWORD_2 ( int_en_reg_ker,
FCN_KER_INT_KER, force,
FCN_DRV_INT_EN_KER, enabled );
falcon_write ( efab, &int_en_reg_ker, FCN_INT_EN_REG_KER );
}
/**
* Enable/disable interrupts
*
*/
static void falcon_mask_irq ( struct efab_nic *efab, int enabled ) {
falcon_interrupts ( efab, enabled, 0 );
if ( enabled ) {
/* Events won't trigger interrupts until we do this */
falcon_eventq_read_ack ( efab );
}
}
/**
* Generate interrupt
*
*/
static void falcon_generate_irq ( struct efab_nic *efab ) {
falcon_interrupts ( efab, 1, 1 );
}
/**
* Reconfigure MAC wrapper
*
*/
static void falcon_reconfigure_mac_wrapper ( struct efab_nic *efab ) {
efab_oword_t reg;
int link_speed;
if ( efab->link_options & LPA_10000 ) {
link_speed = 0x3;
} else if ( efab->link_options & LPA_1000 ) {
link_speed = 0x2;
} else if ( efab->link_options & LPA_100 ) {
link_speed = 0x1;
} else {
link_speed = 0x0;
}
EFAB_POPULATE_OWORD_5 ( reg,
FCN_MAC_XOFF_VAL, 0xffff /* datasheet */,
FCN_MAC_BCAD_ACPT, 1,
FCN_MAC_UC_PROM, 0,
FCN_MAC_LINK_STATUS, 1,
FCN_MAC_SPEED, link_speed );
falcon_write ( efab, &reg,
( efab->port == 0 ?
FCN_MAC0_CTRL_REG_KER : FCN_MAC1_CTRL_REG_KER ) );
/* Disable flow-control (i.e. never generate pause frames) */
falcon_read ( efab, &reg, FCN_RX_CFG_REG_KER );
EFAB_SET_OWORD_FIELD ( reg, FCN_RX_XOFF_EN, 0 );
falcon_write ( efab, &reg, FCN_RX_CFG_REG_KER );
}
/**
* Write dword to a Falcon MAC register
*
*/
static void falcon_gmac_writel ( struct efab_nic *efab,
efab_dword_t *value, unsigned int mac_reg ) {
efab_oword_t temp;
EFAB_POPULATE_OWORD_1 ( temp, FCN_MAC_DATA,
EFAB_DWORD_FIELD ( *value, FCN_MAC_DATA ) );
falcon_write ( efab, &temp, FALCON_GMAC_REG ( efab, mac_reg ) );
}
/**
* Read dword from a Falcon GMAC register
*
*/
static void falcon_gmac_readl ( struct efab_nic *efab, efab_dword_t *value,
unsigned int mac_reg ) {
efab_oword_t temp;
falcon_read ( efab, &temp, FALCON_GMAC_REG ( efab, mac_reg ) );
EFAB_POPULATE_DWORD_1 ( *value, FCN_MAC_DATA,
EFAB_OWORD_FIELD ( temp, FCN_MAC_DATA ) );
}
/**
* Write dword to a Falcon XMAC register
*
*/
static void falcon_xmac_writel ( struct efab_nic *efab,
efab_dword_t *value, unsigned int mac_reg ) {
efab_oword_t temp;
EFAB_POPULATE_OWORD_1 ( temp, FCN_MAC_DATA,
EFAB_DWORD_FIELD ( *value, FCN_MAC_DATA ) );
falcon_write ( efab, &temp,
FALCON_XMAC_REG ( efab, mac_reg ) );
}
/**
* Read dword from a Falcon XMAC register
*
*/
static void falcon_xmac_readl ( struct efab_nic *efab,
efab_dword_t *value,
unsigned int mac_reg ) {
efab_oword_t temp;
falcon_read ( efab, &temp,
FALCON_XMAC_REG ( efab, mac_reg ) );
EFAB_POPULATE_DWORD_1 ( *value, FCN_MAC_DATA,
EFAB_OWORD_FIELD ( temp, FCN_MAC_DATA ) );
}
/**
* Initialise GMAC
*
*/
static int falcon_init_gmac ( struct efab_nic *efab ) {
static struct efab_mentormac_parameters falcon_mentormac_params = {
.gmf_cfgfrth = 0x12,
.gmf_cfgftth = 0x08,
.gmf_cfghwmft = 0x1c,
.gmf_cfghwm = 0x3f,
.gmf_cfglwm = 0xa,
};
/* Initialise PHY */
alaska_init ( efab );
/* check the link is up */
if ( !efab->link_up )
return 0;
/* Initialise MAC */
mentormac_init ( efab, &falcon_mentormac_params );
/* reconfigure the MAC wrapper */
falcon_reconfigure_mac_wrapper ( efab );
return 1;
}
/**
* Reset GMAC
*
*/
static int falcon_reset_gmac ( struct efab_nic *efab ) {
mentormac_reset ( efab );
return 1;
}
/**
* Reset XAUI/XGXS block
*
*/
static int falcon_reset_xaui ( struct efab_nic *efab )
{
efab_dword_t reg;
int count;
EFAB_POPULATE_DWORD_1 ( reg, FCN_XX_RST_XX_EN, 1 );
efab->mac_op->mac_writel ( efab, &reg, FCN_XX_PWR_RST_REG_MAC );
for ( count = 0 ; count < 1000 ; count++ ) {
udelay ( 10 );
efab->mac_op->mac_readl ( efab, &reg,
FCN_XX_PWR_RST_REG_MAC );
if ( EFAB_DWORD_FIELD ( reg, FCN_XX_RST_XX_EN ) == 0 )
return 1;
}
/* an error of some kind */
return 0;
}
/**
* Reset 10G MAC connected to port
*
*/
static int falcon_reset_xmac ( struct efab_nic *efab ) {
efab_dword_t reg;
int count;
EFAB_POPULATE_DWORD_1 ( reg, FCN_XM_CORE_RST, 1 );
efab->mac_op->mac_writel ( efab, &reg, FCN_XM_GLB_CFG_REG_MAC );
for ( count = 0 ; count < 1000 ; count++ ) {
udelay ( 10 );
efab->mac_op->mac_readl ( efab, &reg,
FCN_XM_GLB_CFG_REG_MAC );
if ( EFAB_DWORD_FIELD ( reg, FCN_XM_CORE_RST ) == 0 )
return 1;
}
return 0;
}
/**
* Get status of 10G link
*
*/
static int falcon_xaui_link_ok ( struct efab_nic *efab ) {
efab_dword_t reg;
int align_done;
int sync_status;
int link_ok = 0;
/* Read link status */
efab->mac_op->mac_readl ( efab, &reg, FCN_XX_CORE_STAT_REG_MAC );
align_done = EFAB_DWORD_FIELD ( reg, FCN_XX_ALIGN_DONE );
sync_status = EFAB_DWORD_FIELD ( reg, FCN_XX_SYNC_STAT );
if ( align_done && ( sync_status == FCN_XX_SYNC_STAT_DECODE_SYNCED ) ) {
link_ok = 1;
}
/* Clear link status ready for next read */
EFAB_SET_DWORD_FIELD ( reg, FCN_XX_COMMA_DET, FCN_XX_COMMA_DET_RESET );
efab->mac_op->mac_writel ( efab, &reg, FCN_XX_CORE_STAT_REG_MAC );
return link_ok;
}
/**
* Initialise XMAC
*
*/
static int falcon_init_xmac ( struct efab_nic *efab ) {
efab_dword_t reg;
int count;
if ( !falcon_reset_xmac ( efab ) ) {
EFAB_ERR ( "failed resetting XMAC\n" );
return 0;
}
if ( !falcon_reset_xaui ( efab ) ) {
EFAB_ERR ( "failed resetting XAUI\n");
return 0;
}
/* CX4 is always 10000FD only */
efab->link_options = LPA_10000FULL;
/* Configure MAC */
EFAB_POPULATE_DWORD_3 ( reg,
FCN_XM_RX_JUMBO_MODE, 1,
FCN_XM_TX_STAT_EN, 1,
FCN_XM_RX_STAT_EN, 1);
efab->mac_op->mac_writel ( efab, &reg, FCN_XM_GLB_CFG_REG_MAC );
/* Configure TX */
EFAB_POPULATE_DWORD_6 ( reg,
FCN_XM_TXEN, 1,
FCN_XM_TX_PRMBL, 1,
FCN_XM_AUTO_PAD, 1,
FCN_XM_TXCRC, 1,
FCN_XM_FCNTL, 1,
FCN_XM_IPG, 0x3 );
efab->mac_op->mac_writel ( efab, &reg, FCN_XM_TX_CFG_REG_MAC );
/* Configure RX */
EFAB_POPULATE_DWORD_3 ( reg,
FCN_XM_RXEN, 1,
FCN_XM_AUTO_DEPAD, 1,
FCN_XM_PASS_CRC_ERR, 1 );
efab->mac_op->mac_writel ( efab, &reg, FCN_XM_RX_CFG_REG_MAC );
/* Set frame length */
EFAB_POPULATE_DWORD_1 ( reg,
FCN_XM_MAX_RX_FRM_SIZE, ETH_FRAME_LEN );
efab->mac_op->mac_writel ( efab, &reg, FCN_XM_RX_PARAM_REG_MAC );
EFAB_POPULATE_DWORD_2 ( reg,
FCN_XM_MAX_TX_FRM_SIZE, ETH_FRAME_LEN,
FCN_XM_TX_JUMBO_MODE, 1 );
efab->mac_op->mac_writel ( efab, &reg, FCN_XM_TX_PARAM_REG_MAC );
/* Set MAC address */
EFAB_POPULATE_DWORD_4 ( reg,
FCN_XM_ADR_0, efab->mac_addr[0],
FCN_XM_ADR_1, efab->mac_addr[1],
FCN_XM_ADR_2, efab->mac_addr[2],
FCN_XM_ADR_3, efab->mac_addr[3] );
efab->mac_op->mac_writel ( efab, &reg, FCN_XM_ADR_LO_REG_MAC );
EFAB_POPULATE_DWORD_2 ( reg,
FCN_XM_ADR_4, efab->mac_addr[4],
FCN_XM_ADR_5, efab->mac_addr[5] );
efab->mac_op->mac_writel ( efab, &reg, FCN_XM_ADR_HI_REG_MAC );
/* Reconfigure MAC wrapper */
falcon_reconfigure_mac_wrapper ( efab );
/**
* Try resetting XAUI on its own waiting for the link
* to come up
*/
for(count=0; count<5; count++) {
/* Check link status */
efab->link_up = falcon_xaui_link_ok ( efab );
if ( efab->link_up ) {
/**
* Print out a speed message since we don't have a PHY
*/
EFAB_LOG ( "%dMbps %s-duplex\n",
( efab->link_options & LPA_10000 ? 1000 :
( efab->link_options & LPA_1000 ? 1000 :
( efab->link_options & LPA_100 ? 100 : 10 ) ) ),
( efab->link_options & LPA_DUPLEX ? "full" : "half" ) );
break;
}
if ( !falcon_reset_xaui ( efab ) ) {
EFAB_ERR ( "failed resetting xaui\n" );
return 0;
}
udelay(100);
}
return 1;
}
/**
* Wait for GMII access to complete
*
*/
static int falcon_gmii_wait ( struct efab_nic *efab ) {
efab_oword_t md_stat;
int count;
for ( count = 0 ; count < 1000 ; count++ ) {
udelay ( 10 );
falcon_read ( efab, &md_stat, FCN_MD_STAT_REG_KER );
if ( EFAB_OWORD_FIELD ( md_stat, FCN_MD_BSY ) == 0 )
return 1;
}
EFAB_ERR ( "Timed out waiting for GMII\n" );
return 0;
}
static struct efab_mac_operations falcon_xmac_operations = {
.mac_readl = falcon_xmac_readl,
.mac_writel = falcon_xmac_writel,
.init = falcon_init_xmac,
.reset = falcon_reset_xmac,
};
static struct efab_mac_operations falcon_gmac_operations = {
.mac_readl = falcon_gmac_readl,
.mac_writel = falcon_gmac_writel,
.init = falcon_init_gmac,
.reset = falcon_reset_gmac,
};
/**
* Initialise NIC
*
*/
static int falcon_init_nic ( struct efab_nic *efab ) {
efab_oword_t reg;
efab_dword_t timer_cmd;
int version, minor;
/* use card in internal SRAM mode */
falcon_read ( efab, &reg, FCN_NIC_STAT_REG );
EFAB_SET_OWORD_FIELD ( reg, ONCHIP_SRAM, 1 );
falcon_write ( efab, &reg, FCN_NIC_STAT_REG );
wmb();
/* identify FPGA/ASIC, and strapping mode */
falcon_read ( efab, &reg, ALTERA_BUILD_REG_KER );
version = EFAB_OWORD_FIELD ( reg, VER_ALL );
efab->is_asic = version ? 0 : 1;
if ( efab->is_asic ) {
falcon_read ( efab, &reg, FCN_NIC_STAT_REG );
if ( EFAB_OWORD_FIELD ( reg, STRAP_10G ) ) {
efab->is_10g = 1;
}
if ( EFAB_OWORD_FIELD ( reg, STRAP_DUAL_PORT ) ) {
efab->is_dual = 1;
}
}
else {
falcon_read ( efab, &reg, ALTERA_BUILD_REG_KER );
minor = EFAB_OWORD_FIELD ( reg, VER_MINOR );
if ( minor == 0x14 ) {
efab->is_10g = 1;
} else if ( minor == 0x13 ) {
efab->is_dual = 1;
}
}
DBG ( "NIC type: %s %dx%s\n",
efab->is_asic ? "ASIC" : "FPGA",
efab->is_dual ? 2 : 1,
efab->is_10g ? "10G" : "1G" );
/* patch in MAC operations */
if ( efab->is_10g )
efab->mac_op = &falcon_xmac_operations;
else
efab->mac_op = &falcon_gmac_operations;
if ( !efab->is_dual && ( efab->port == 1 ) ) {
/* device doesn't exist */
return 0;
}
/* determine EEPROM / FLASH */
if ( efab->is_asic ) {
falcon_read ( efab, &reg, FCN_NIC_STAT_REG );
efab->has_flash = EFAB_OWORD_FIELD ( reg, SF_PRST );
efab->has_eeprom = EFAB_OWORD_FIELD ( reg, EE_PRST );
} else {
falcon_read ( efab, &reg, FCN_GPIO_CTL_REG_KER );
efab->has_flash = EFAB_OWORD_FIELD ( reg, FCN_FLASH_PRESENT );
efab->has_eeprom = EFAB_OWORD_FIELD ( reg, FCN_EEPROM_PRESENT);
}
DBG ( "flash is %s, EEPROM is %s\n",
( efab->has_flash ? "present" : "absent" ),
( efab->has_eeprom ? "present" : "absent" ) );
falcon_init_spi ( efab );
/* Set up TX and RX descriptor caches in SRAM */
EFAB_POPULATE_OWORD_1 ( reg, FCN_SRM_TX_DC_BASE_ADR,
0x130000 /* recommended in datasheet */ );
falcon_write ( efab, &reg, FCN_SRM_TX_DC_CFG_REG_KER );
EFAB_POPULATE_OWORD_1 ( reg, FCN_TX_DC_SIZE, 2 /* 32 descriptors */ );
falcon_write ( efab, &reg, FCN_TX_DC_CFG_REG_KER );
EFAB_POPULATE_OWORD_1 ( reg, FCN_SRM_RX_DC_BASE_ADR,
0x100000 /* recommended in datasheet */ );
falcon_write ( efab, &reg, FCN_SRM_RX_DC_CFG_REG_KER );
EFAB_POPULATE_OWORD_1 ( reg, FCN_RX_DC_SIZE, 2 /* 32 descriptors */ );
falcon_write ( efab, &reg, FCN_RX_DC_CFG_REG_KER );
/* Set number of RSS CPUs */
EFAB_POPULATE_OWORD_1 ( reg, FCN_NUM_KER, 0 );
falcon_write ( efab, &reg, FCN_RX_FILTER_CTL_REG_KER );
udelay ( 1000 );
/* Reset the MAC */
mentormac_reset ( efab );
/* Set up event queue */
falcon_create_special_buffer ( efab, efab->eventq, FALCON_EVQ_ID );
/* Fill eventq with all ones ( empty events ) */
memset(efab->eventq, 0xff, 4096);
/* push eventq to card */
EFAB_POPULATE_OWORD_3 ( reg,
FCN_EVQ_EN, 1,
FCN_EVQ_SIZE, FCN_EVQ_SIZE_512,
FCN_EVQ_BUF_BASE_ID, FALCON_EVQ_ID );
falcon_write ( efab, &reg, FCN_EVQ_PTR_TBL_KER );
udelay ( 1000 );
/* Set timer register */
EFAB_POPULATE_DWORD_2 ( timer_cmd,
FCN_TIMER_MODE, FCN_TIMER_MODE_DIS,
FCN_TIMER_VAL, 0 );
falcon_writel ( efab, &timer_cmd, FCN_TIMER_CMD_REG_KER );
udelay ( 1000 );
/* Initialise event queue read pointer */
falcon_eventq_read_ack ( efab );
/* Set up TX descriptor ring */
falcon_create_special_buffer ( efab, efab->txd, FALCON_TXD_ID );
EFAB_POPULATE_OWORD_5 ( reg,
FCN_TX_DESCQ_EN, 1,
FCN_TX_DESCQ_BUF_BASE_ID, FALCON_TXD_ID,
FCN_TX_DESCQ_EVQ_ID, 0,
FCN_TX_DESCQ_SIZE, FCN_TX_DESCQ_SIZE_512,
FCN_TX_DESCQ_TYPE, 0 /* kernel queue */ );
falcon_write ( efab, &reg, FCN_TX_DESC_PTR_TBL_KER );
/* Set up RX descriptor ring */
falcon_create_special_buffer ( efab, efab->rxd, FALCON_RXD_ID );
EFAB_POPULATE_OWORD_6 ( reg,
FCN_RX_DESCQ_BUF_BASE_ID, FALCON_RXD_ID,
FCN_RX_DESCQ_EVQ_ID, 0,
FCN_RX_DESCQ_SIZE, FCN_RX_DESCQ_SIZE_512,
FCN_RX_DESCQ_TYPE, 0 /* kernel queue */,
FCN_RX_DESCQ_JUMBO, 1,
FCN_RX_DESCQ_EN, 1 );
falcon_write ( efab, &reg, FCN_RX_DESC_PTR_TBL_KER );
/* Program INT_ADR_REG_KER */
EFAB_POPULATE_OWORD_1 ( reg,
FCN_INT_ADR_KER,
virt_to_bus ( &efab->int_ker ) );
falcon_write ( efab, &reg, FCN_INT_ADR_REG_KER );
udelay ( 1000 );
/* Register non-volatile storage */
if ( efab->has_eeprom ) {
nvo_init ( &efab->nvo, &efab->falcon_eeprom.nvs,
falcon_eeprom_fragments, NULL /* hack */ );
if ( register_nvo ( &efab->nvo, NULL /* hack */ ) != 0 )
return 0;
}
return 1;
}
/** MDIO write */
static void falcon_mdio_write ( struct efab_nic *efab, int location,
int value ) {
int phy_id = efab->port + 2;
efab_oword_t reg;
EFAB_TRACE ( "Writing GMII %d register %02x with %04x\n",
phy_id, location, value );
/* Check MII not currently being accessed */
if ( ! falcon_gmii_wait ( efab ) )
return;
/* Write the address registers */
EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_PHY_ADR, 0 /* phy_id ? */ );
falcon_write ( efab, &reg, FCN_MD_PHY_ADR_REG_KER );
udelay ( 10 );
EFAB_POPULATE_OWORD_2 ( reg,
FCN_MD_PRT_ADR, phy_id,
FCN_MD_DEV_ADR, location );
falcon_write ( efab, &reg, FCN_MD_ID_REG_KER );
udelay ( 10 );
/* Write data */
EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_TXD, value );
falcon_write ( efab, &reg, FCN_MD_TXD_REG_KER );
udelay ( 10 );
EFAB_POPULATE_OWORD_2 ( reg,
FCN_MD_WRC, 1,
FCN_MD_GC, 1 );
falcon_write ( efab, &reg, FCN_MD_CS_REG_KER );
udelay ( 10 );
/* Wait for data to be written */
falcon_gmii_wait ( efab );
}
/** MDIO read */
static int falcon_mdio_read ( struct efab_nic *efab, int location ) {
int phy_id = efab->port + 2;
efab_oword_t reg;
int value;
/* Check MII not currently being accessed */
if ( ! falcon_gmii_wait ( efab ) )
return 0xffff;
/* Write the address registers */
EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_PHY_ADR, 0 /* phy_id ? */ );
falcon_write ( efab, &reg, FCN_MD_PHY_ADR_REG_KER );
udelay ( 10 );
EFAB_POPULATE_OWORD_2 ( reg,
FCN_MD_PRT_ADR, phy_id,
FCN_MD_DEV_ADR, location );
falcon_write ( efab, &reg, FCN_MD_ID_REG_KER );
udelay ( 10 );
/* Request data to be read */
EFAB_POPULATE_OWORD_2 ( reg,
FCN_MD_RIC, 1,
FCN_MD_GC, 1 );
falcon_write ( efab, &reg, FCN_MD_CS_REG_KER );
udelay ( 10 );
/* Wait for data to become available */
falcon_gmii_wait ( efab );
/* Read the data */
falcon_read ( efab, &reg, FCN_MD_RXD_REG_KER );
value = EFAB_OWORD_FIELD ( reg, FCN_MD_RXD );
EFAB_TRACE ( "Read from GMII %d register %02x, got %04x\n",
phy_id, location, value );
return value;
}
static struct efab_operations falcon_operations = {
.get_membase = falcon_get_membase,
.reset = falcon_reset,
.init_nic = falcon_init_nic,
.read_eeprom = falcon_read_eeprom,
.build_rx_desc = falcon_build_rx_desc,
.notify_rx_desc = falcon_notify_rx_desc,
.build_tx_desc = falcon_build_tx_desc,
.notify_tx_desc = falcon_notify_tx_desc,
.fetch_event = falcon_fetch_event,
.mask_irq = falcon_mask_irq,
.generate_irq = falcon_generate_irq,
.mdio_write = falcon_mdio_write,
.mdio_read = falcon_mdio_read,
};
/**************************************************************************
*
* Etherfabric abstraction layer
*
**************************************************************************
*/
/**
* Push RX buffer to RXD ring
*
*/
static inline void efab_push_rx_buffer ( struct efab_nic *efab,
struct efab_rx_buf *rx_buf ) {
/* Create RX descriptor */
rx_buf->id = efab->rx_write_ptr;
efab->op->build_rx_desc ( efab, rx_buf );
/* Update RX write pointer */
efab->rx_write_ptr = ( efab->rx_write_ptr + 1 ) % EFAB_RXD_SIZE;
efab->op->notify_rx_desc ( efab );
DBG ( "Added RX id %x\n", rx_buf->id );
}
/**
* Push TX buffer to TXD ring
*
*/
static inline void efab_push_tx_buffer ( struct efab_nic *efab,
struct efab_tx_buf *tx_buf ) {
/* Create TX descriptor */
tx_buf->id = efab->tx_write_ptr;
efab->op->build_tx_desc ( efab, tx_buf );
/* Update TX write pointer */
efab->tx_write_ptr = ( efab->tx_write_ptr + 1 ) % EFAB_TXD_SIZE;
efab->op->notify_tx_desc ( efab );
DBG ( "Added TX id %x\n", tx_buf->id );
}
/**
* Initialise MAC and wait for link up
*
*/
static int efab_init_mac ( struct efab_nic *efab ) {
int count;
/* This can take several seconds */
EFAB_LOG ( "Waiting for link.." );
for ( count=0; count<5; count++ ) {
putchar ( '.' );
if ( ! efab->mac_op->init ( efab ) ) {
EFAB_ERR ( "Failed reinitialising MAC\n" );
return 0;
}
if ( efab->link_up ) {
/* PHY init printed the message for us */
return 1;
}
EFAB_ERR( "link is down" );
sleep ( 1 );
}
EFAB_ERR ( " timed initialising MAC\n " );
return 0;
}
/**
* Initialise NIC
*
*/
static int efab_init_nic ( struct efab_nic *efab ) {
int i;
/* Initialise NIC */
if ( ! efab->op->init_nic ( efab ) )
return 0;
/* Push RX descriptors */
for ( i = 0 ; i < EFAB_RX_BUFS ; i++ ) {
efab_push_rx_buffer ( efab, &efab->rx_bufs[i] );
}
/* Read MAC address from EEPROM */
if ( ! efab->op->read_eeprom ( efab ) )
return 0;
/* Initialise MAC and wait for link up */
if ( ! efab_init_mac ( efab ) )
return 0;
return 1;
}
/**************************************************************************
*
* Etherboot interface
*
**************************************************************************
*/
/**************************************************************************
POLL - Wait for a frame
***************************************************************************/
static int etherfabric_poll ( struct nic *nic, int retrieve ) {
struct efab_nic *efab = nic->priv_data;
struct efab_event event;
static struct efab_rx_buf *rx_buf = NULL;
int i, drop = 0;
/* Process the event queue until we hit either a packet
* received event or an empty event slot.
*/
while ( ( rx_buf == NULL ) &&
efab->op->fetch_event ( efab, &event ) ) {
drop = event.drop;
if ( event.type == EFAB_EV_TX ) {
/* TX completed - mark as done */
DBG ( "TX id %x complete\n",
efab->tx_buf.id );
} else if ( event.type == EFAB_EV_RX ) {
/* RX - find corresponding buffer */
for ( i = 0 ; i < EFAB_RX_BUFS ; i++ ) {
if ( efab->rx_bufs[i].id == event.rx_id ) {
rx_buf = &efab->rx_bufs[i];
rx_buf->len = event.rx_len;
DBG ( "RX id %x (len %x) received\n",
rx_buf->id, rx_buf->len );
break;
}
}
if ( ! rx_buf ) {
EFAB_ERR ( "Invalid RX ID %x\n", event.rx_id );
}
} else if ( event.type == EFAB_EV_NONE ) {
DBG ( "Ignorable event\n" );
} else {
DBG ( "Unknown event\n" );
}
}
/* If there is no packet, return 0 */
if ( ! rx_buf )
return 0;
/* drop this event if necessary */
if ( drop ) {
DBG( "discarding RX event\n" );
return 0;
}
/* If we don't want to retrieve it just yet, return 1 */
if ( ! retrieve )
return 1;
/* There seems to be a hardware race. The event can show up
* on the event FIFO before the DMA has completed, so we
* insert a tiny delay. If this proves unreliable, we should
* switch to using event DMA rather than the event FIFO, since
* event DMA ordering is guaranteed.
*/
udelay ( 2 );
/* Copy packet contents */
nic->packetlen = rx_buf->len;
memcpy ( nic->packet, rx_buf->addr, nic->packetlen );
/* Give this buffer back to the NIC */
efab_push_rx_buffer ( efab, rx_buf );
/* Prepare to receive next packet */
rx_buf = NULL;
return 1;
}
/**************************************************************************
TRANSMIT - Transmit a frame
***************************************************************************/
static void etherfabric_transmit ( struct nic *nic, const char *dest,
unsigned int type, unsigned int size,
const char *data ) {
struct efab_nic *efab = nic->priv_data;
unsigned int nstype = htons ( type );
/* Fill TX buffer, pad to ETH_ZLEN */
memcpy ( efab->tx_buf.addr, dest, ETH_ALEN );
memcpy ( efab->tx_buf.addr + ETH_ALEN, nic->node_addr, ETH_ALEN );
memcpy ( efab->tx_buf.addr + 2 * ETH_ALEN, &nstype, 2 );
memcpy ( efab->tx_buf.addr + ETH_HLEN, data, size );
size += ETH_HLEN;
while ( size < ETH_ZLEN ) {
efab->tx_buf.addr[size++] = '\0';
}
efab->tx_buf.len = size;
/* Push TX descriptor */
efab_push_tx_buffer ( efab, &efab->tx_buf );
/* Allow enough time for the packet to be transmitted. This
* is a temporary hack until we update to the new driver API.
*/
udelay ( 20 );
return;
}
/**************************************************************************
DISABLE - Turn off ethernet interface
***************************************************************************/
static void etherfabric_disable ( struct nic *nic ) {
struct efab_nic *efab = nic->priv_data;
efab->op->reset ( efab );
if ( efab->membase )
iounmap ( efab->membase );
}
/**************************************************************************
IRQ - handle interrupts
***************************************************************************/
static void etherfabric_irq ( struct nic *nic, irq_action_t action ) {
struct efab_nic *efab = nic->priv_data;
switch ( action ) {
case DISABLE :
efab->op->mask_irq ( efab, 1 );
break;
case ENABLE :
efab->op->mask_irq ( efab, 0 );
break;
case FORCE :
/* Force NIC to generate a receive interrupt */
efab->op->generate_irq ( efab );
break;
}
return;
}
static struct nic_operations etherfabric_operations = {
.connect = dummy_connect,
.poll = etherfabric_poll,
.transmit = etherfabric_transmit,
.irq = etherfabric_irq,
};
/**************************************************************************
PROBE - Look for an adapter, this routine's visible to the outside
***************************************************************************/
static int etherfabric_probe ( struct nic *nic, struct pci_device *pci ) {
static struct efab_nic efab;
static int nic_port = 1;
struct efab_buffers *buffers;
int i;
/* Set up our private data structure */
nic->priv_data = &efab;
memset ( &efab, 0, sizeof ( efab ) );
memset ( &efab_buffers, 0, sizeof ( efab_buffers ) );
/* Hook in appropriate operations table. Do this early. */
if ( pci->device == EF1002_DEVID ) {
efab.op = &ef1002_operations;
} else {
efab.op = &falcon_operations;
}
/* Initialise efab data structure */
efab.pci = pci;
buffers = ( ( struct efab_buffers * )
( ( ( void * ) &efab_buffers ) +
( - virt_to_bus ( &efab_buffers ) ) % EFAB_BUF_ALIGN ) );
efab.eventq = buffers->eventq;
efab.txd = buffers->txd;
efab.rxd = buffers->rxd;
efab.tx_buf.addr = buffers->tx_buf;
for ( i = 0 ; i < EFAB_RX_BUFS ; i++ ) {
efab.rx_bufs[i].addr = buffers->rx_buf[i];
}
/* Enable the PCI device */
adjust_pci_device ( pci );
nic->ioaddr = pci->ioaddr & ~3;
nic->irqno = pci->irq;
/* Get iobase/membase */
efab.iobase = nic->ioaddr;
efab.op->get_membase ( &efab );
/* Switch NIC ports (i.e. try different ports on each probe) */
nic_port = 1 - nic_port;
efab.port = nic_port;
/* Initialise hardware */
if ( ! efab_init_nic ( &efab ) )
return 0;
memcpy ( nic->node_addr, efab.mac_addr, ETH_ALEN );
/* point to NIC specific routines */
nic->nic_op = &etherfabric_operations;
return 1;
}
static struct pci_device_id etherfabric_nics[] = {
PCI_ROM(0x1924, 0xC101, "ef1002", "EtherFabric EF1002"),
PCI_ROM(0x1924, 0x0703, "falcon", "EtherFabric Falcon"),
};
PCI_DRIVER ( etherfabric_driver, etherfabric_nics, PCI_NO_CLASS );
DRIVER ( "EFAB", nic_driver, pci_driver, etherfabric_driver,
etherfabric_probe, etherfabric_disable );
/*
* Local variables:
* c-basic-offset: 8
* c-indent-level: 8
* tab-width: 8
* End:
*/