Use INT 1a,564e to notify the BIOS of each network device that we
detect. This provides an opportunity for the BIOS to implement
platform policy such as changing the MAC address by issuing a call to
PXENV_UNDI_SET_STATION_ADDRESS.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Invoke INT 1a,564e whenever a PXE stack is activated, passing the
address of the PXENV+ structure in %es:%bx. This is designed to allow
a BIOS to be notified when a PXE stack has been installed, providing
an opportunity for start-of-day commands such as setting the MAC
address according to a policy chosen by the BIOS.
PXE defines INT 1a,5650 as a means of locating the PXENV+ structure:
this call returns %ax=0x564e and the address of the PXENV+ structure
in %es:%bx. We choose INT 1a,564e as a fairly natural notification
call, using the parameters as would be returned by INT 1a,5650.
The full calling convention (documented as per section 3.1 of the PXE
specification) is:
INT 1a,564e - PXE installation notification
Enter:
%ax = 0x564e
%es = 16-bit segment address of the PXENV+ structure
%bx = 16-bit offset of the PXENV+ structure
Exit:
%edx may be trashed (as is the case for INT 1a,5650)
All other register contents must be preserved
CF is cleared
IF is preserved
All other flags are undefined
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Merge the functionality of parse_next_server_and_filename() and
tftp_uri() into a single pxe_uri(), which takes a server address
(IPv4/IPv6/none) and a filename, and produces a URI using the rule:
- if the filename is a hierarchical absolute URI (i.e. includes a
scheme such as "http://" or "tftp://") then use that URI and ignore
the server address,
- otherwise, if the server address is recognised (according to
sa_family) then construct a TFTP URI based on the server address,
port, and filename
- otherwise fail.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Commit edf74df ("[pxe] Always reconstruct packet for
PXENV_GET_CACHED_INFO") fixed the problems caused by returning stale
DHCP packets (e.g. from an earlier boot attempt using a different
network device), but broke interoperability with NBPs such as WDS
which may overwrite our cached (fake) DHCP packets and expect the
modified packets to be returned by a subsequent call to
PXENV_GET_CACHED_INFO.
Fix by constructing the fake DHCP packets immediately before
transferring control to a PXE NBP. Calls to PXENV_GET_CACHED_INFO
will now never modify the cached packets.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Avoid accidentally returning stale packets (e.g. for a previously
attempted network device) by always constructing a fresh DHCP packet.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
At some point in the past few years, binutils became more aggressive
at removing unused symbols. To function as a symbol requirement, a
relocation record must now be in a section marked with @progbits and
must not be in a section which gets discarded during the link (either
via --gc-sections or via /DISCARD/).
Update REQUIRE_SYMBOL() to generate relocation records meeting these
criteria. To minimise the impact upon the final binary size, we use
existing symbols (specified via the REQUIRING_SYMBOL() macro) as the
relocation targets where possible. We use R_386_NONE or R_X86_64_NONE
relocation types to prevent any actual unwanted relocation taking
place. Where no suitable symbol exists for REQUIRING_SYMBOL() (such
as in config.c), the macro PROVIDE_REQUIRING_SYMBOL() can be used to
generate a one-byte-long symbol to act as the relocation target.
If there are versions of binutils for which this approach fails, then
the fallback will probably involve killing off REQUEST_SYMBOL(),
redefining REQUIRE_SYMBOL() to use the current definition of
REQUEST_SYMBOL(), and postprocessing the linked ELF file with
something along the lines of "nm -u | wc -l" to check that there are
no undefined symbols remaining.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
These files cannot be automatically relicensed by util/relicense.pl
since they either contain unusual but trivial contributions (such as
the addition of __nonnull function attributes), or contain lines
dating back to the initial git revision (and so require manual
knowledge of the code's origin).
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Some devices return multiple packets in a single poll. Handle such
devices gracefully by enqueueing received PXE UDP packets (along with
a pseudo-header to hold the IPv4 addresses and port numbers) and
dequeueing them on subsequent calls to PXENV_UDP_READ.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Fetching the TFTP file size is currently implemented via a custom
"tftpsize://" protocol hack. Generalise this approach to instead
close the TFTP connection whenever the parent data-transfer interface
is closed.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
gcc 4.8 and 4.9 fail to compile pxe_call.c with the error "bp cannot
be used in asm here". Other points in the codebase which use "ebp" in
the asm clobber list do not seem to be affected.
Unfortunately gcc provides no way to specify %ebp as an output
register, so we cannot use this as a workaround. The only viable
solution is to explicitly push/pop %ebp within the asm itself. This
is ugly for two reasons: firstly, it may be unnecessary; secondly, it
may cause gcc to generate invalid %esp-relative addresses if the asm
happens to use memory operands. This specific block of asm uses no
memory operands and so will not generate invalid code.
Reported-by: Daniel P. Berrange <berrange@redhat.com>
Reported-by: Christian Hesse <list@eworm.de>
Originally-fixed-by: Christian Hesse <list@eworm.de>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The PXE TFTP API allows the caller to request a particular TFTP block
size. Since mid-2008, iPXE has appended a "?blksize=xxx" parameter to
the TFTP URI constructed internally; nothing has ever parsed this
parameter. Nobody seems to have cared that this parameter has been
ignored for almost five years.
Fix by using xfer_window(), which provides a fairly natural way to
convey the block size information from the PXE TFTP API to the TFTP
protocol layer.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Almost all clients of the raw-packet interfaces (UNDI and SNP) can
handle only Ethernet link layers. Expose an Ethernet-compatible link
layer to local clients, while remaining compatible with IPoIB on the
wire. This requires manipulation of ARP (but not DHCP) packets within
the IPoIB driver.
This is ugly, but it's the only viable way to allow IPoIB devices to
be driven via the raw-packet interfaces.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
PXENV_FILE_EXIT_HOOK is designed to allow ipxelinux.0 to unload both
the iPXE and pxelinux components without affecting the underlying PXE
stack. Unfortunately, it causes unexpected behaviour in other
situations, such as when loading a non-embedded pxelinux.0 via
undionly.kpxe. For example:
PXE ROM -> undionly.kpxe -> pxelinux.0 -> chain.c32 to boot hd0
would cause control to return to iPXE instead of booting from the hard
disk. In some cases, this would result in a harmless but confusing
"No more network devices" message; in other cases stranger things
would happen, such as being returned to the iPXE shell prompt.
The fundamental problem is that when pxelinux detects
PXENV_FILE_EXIT_HOOK, it may attempt to specify an exit hook and then
exit back to iPXE, assuming that iPXE will in turn exit cleanly via
the specified exit hook. This is not a valid assumption in the
general case, since the action of exiting back to iPXE does not
directly cause iPXE to exit itself. (In the specific case of
ipxelinux.0, this will work since the embedded script exits as soon as
pxelinux.0 exits.)
Fix the unexpected behaviour in the non-ipxelinux.0 cases by including
support for PXENV_FILE_EXIT_HOOK only when using a new .kkkpxe format.
The ipxelinux.0 build process should therefore now use undionly.kkkpxe
instead of undionly.kkpxe.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Very nasty things can happen if a NULL network device is used. Check
that pxe_netdev is non-NULL at the applicable entry points, so that
this type of problem gets reported to the caller rather than being
allowed to crash the system.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Allow the link layer to directly report whether or not a packet is
multicast or broadcast at the time of calling pull(), rather than
relying on heuristics to determine this at a later stage.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Remove the concept of shutdown exit flags, and replace it with a
counter used to keep track of exposed interfaces that require devices
to remain active.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
The PXE debugging messages have remained pretty much unaltered since
Etherboot 5.4, and are now difficult to read in comparison to most of
the rest of iPXE.
Bring the pxe_udp debug messages up to normal iPXE standards.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Earlier versions of the PXE specification do not have the SubVendor_ID
and SubDevice_ID fields, and some NBPs may not provide space for them.
Avoid overwriting the contents of these fields, just in case.
This is similar to the problem with the BufferLimit field in
PXENV_GET_CACHED_INFO.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
iPXE has never supported SEEK_END; the usage of "whence" offers only
the options of SEEK_SET and SEEK_CUR and so is effectively a boolean
flag. Further flags will be required to support additional metadata
required by the Fibre Channel network model, so repurpose the "whence"
field as a generic "flags" field.
xfer_seek() has always been used with SEEK_SET, so remove the "whence"
field altogether from its argument list.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Remove data-xfer as an interface type, and replace data-xfer
interfaces with generic interfaces supporting the data-xfer methods.
Filter interfaces (as used by the TLS layer) are handled using the
generic pass-through interface capability. A side-effect of this is
that deliver_raw() no longer exists as a data-xfer method. (In
practice this doesn't lose any efficiency, since there are no
instances within the current codebase where xfer_deliver_raw() is used
to pass data to an interface supporting the deliver_raw() method.)
Signed-off-by: Michael Brown <mcb30@ipxe.org>
strerror() has not been able to use the PXE-only error table since
commit 9aa61ad ("Add per-file error identifiers") back in 2007.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
This removes the need for inline safety wrappers, marginally reducing
the size penalty of weak functions, and works around an apparent
binutils bug that causes undefined weak symbols to not actually be
NULL when compiling with -fPIE (as EFI builds do).
A bug in versions of binutils prior to 2.16 (released in 2005) will
cause same-file weak definitions to not work with those
toolchains. Update the README to reflect our new dependency on
binutils >= 2.16.
Signed-off-by: Joshua Oreman <oremanj@rwcr.net>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Microsoft WDS can end up calling PXENV_RESTART_TFTP to execute a
second-stage NBP which then exits. Specifically, wdsnbp.com uses
PXENV_RESTART_TFTP to execute pxeboot.com, which will exit if the user
does not press F12. iPXE currently treats PXENV_RESTART_TFTP as a
normal PXE API call, and so attempts to return to wdsnbp.com, which
has just been vaporised by pxeboot.com.
Use rmsetjmp/rmlongjmp to preserve the stack state as of the initial
NBP execution, and to restore this state immediately prior to
executing the NBP loaded via PXENV_RESTART_TFTP. This matches the
behaviour in the PXE spec (which says that "if TFTP is restarted,
control is never returned to the caller"), and allows pxeboot.com to
exit relatively cleanly back to iPXE.
As with all usage of setjmp/longjmp, there may be subtle corner case
bugs due to not gracefully unwinding any state accumulated by the time
of the longjmp call, but this seems to be the only viable way to
provide the specified behaviour.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Access to the gpxe.org and etherboot.org domains and associated
resources has been revoked by the registrant of the domain. Work
around this problem by renaming project from gPXE to iPXE, and
updating URLs to match.
Also update README, LOG and COPYRIGHTS to remove obsolete information.
Signed-off-by: Michael Brown <mcb30@ipxe.org>
gPXE currently overwrites the filename stored in the cached DHCP
packets when a call to PXENV_TFTP_READ_FILE or PXENV_RESTART_TFTP is
made. This code has existed for many years as a workaround for RIS,
which seemed to require that this be done.
pxe_set_cached_filename() causes problems with the Bootix NBP, and a
recent test demonstrates that RIS will complete successfully even with
pxe_set_cached_filename() removed. There have been many changes to
the DHCP and PXE logic since this code was first added, and it is
quite plausible that it was masking a bug that no longer exists.
Reported-by: Alex Zeffertt <alex.zeffertt@eu.citrix.com>
Debugged-by: Shao Miller <Shao.Miller@yrdsb.edu.on.ca>
Signed-off-by: Michael Brown <mcb30@etherboot.org>
Current gPXE code always returns "OURS" in response to
PXENV_UNDI_ISR:START. This is harmless for non-shared interrupt
lines, and avoids the complexity of trying to determine whether or not
we really did cause the interrupt. (This is a non-trivial
determination; some drivers don't have interrupt support and hook the
system timer interrupt instead, for example.)
A problem occurs when we have a shared interrupt line, the other
device asserts an interrupt, and the controlling ISR does not chain to
the other device's ISR when we return "OURS". Under these
circumstances, the other device's ISR never executes, and so the
interrupt remains asserted, causing an interrupt storm.
Work around this by returning "OURS" if and only if our net device's
interrupt is currently recorded as being enabled. Since we always
disable interrupts as a result of a call to PXENV_UNDI_ISR:START, this
guarantees that we will eventually (on the second call) return "NOT
OURS", allowing the other ISR to be called. Under normal operation,
including a non-shared interrupt situation, this change will make no
difference since PXENV_UNDI_ISR:START would be called only when
interrupts were enabled anyway.
Signed-off-by: Michael Brown <mcb30@etherboot.org>
It might be the case that we wish to chain to an NBP without
being "in the way". We now implement a hook in our exit path
for gPXE *.*pxe build targets. The hook is a pointer to a
SEG16:OFF16 which we try to jump to during exit. By default,
this pointer results in the usual exit path.
We also implement the "pxenv_file_exit_hook" PXE API routine
to allow the user to specify an alternate SEG16:OFF16 to jump
to during exit.
Unfortunately, this additional PXE extension has a cost
in code size. Fortunately, a look at the size difference
for a gPXE .rom build target shows zero size difference
after compression.
The routine is documented in doc/pxe_extensions as follows:
FILE EXIT HOOK
Op-Code: PXENV_FILE_EXIT_HOOK (00e7h)
Input: Far pointer to a t_PXENV_FILE_EXIT_HOOK parameter
structure that has been initialized by the caller.
Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE must be
returned in AX. The Status field in the parameter
structure must be set to one of the values represented
by the PXENV_STATUS_xxx constants.
Description:Modify the exit path to jump to the specified code.
Only valid for pxeprefix-based builds.
typedef struct s_PXENV_FILE_EXIT_HOOK {
PXENV_STATUS_t Status;
SEGOFF16_t Hook;
} t_PXENV_FILE_EXIT_HOOK;
Set before calling API service:
Hook: The SEG16:OFF16 of the code to jump to.
Returned from API service:
Status: See PXENV_STATUS_xxx constants.
Requested-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Shao Miller <shao.miller@yrdsb.edu.on.ca>
Signed-off-by: Marty Connor <mdc@etherboot.org>