mirror of
https://github.com/ipxe/ipxe
synced 2026-02-14 02:31:26 +03:00
[crypto] Add block cipher Galois/Counter mode of operation
Signed-off-by: Michael Brown <mcb30@ipxe.org>
This commit is contained in:
@@ -38,6 +38,7 @@ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
|
||||
#include <ipxe/crypto.h>
|
||||
#include <ipxe/ecb.h>
|
||||
#include <ipxe/cbc.h>
|
||||
#include <ipxe/gcm.h>
|
||||
#include <ipxe/aes.h>
|
||||
|
||||
/** AES strides
|
||||
@@ -798,3 +799,7 @@ ECB_CIPHER ( aes_ecb, aes_ecb_algorithm,
|
||||
/* AES in Cipher Block Chaining mode */
|
||||
CBC_CIPHER ( aes_cbc, aes_cbc_algorithm,
|
||||
aes_algorithm, struct aes_context, AES_BLOCKSIZE );
|
||||
|
||||
/* AES in Galois/Counter mode */
|
||||
GCM_CIPHER ( aes_gcm, aes_gcm_algorithm,
|
||||
aes_algorithm, struct aes_context, AES_BLOCKSIZE );
|
||||
|
||||
531
src/crypto/gcm.c
Normal file
531
src/crypto/gcm.c
Normal file
@@ -0,0 +1,531 @@
|
||||
/*
|
||||
* Copyright (C) 2022 Michael Brown <mbrown@fensystems.co.uk>.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License as
|
||||
* published by the Free Software Foundation; either version 2 of the
|
||||
* License, or any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
||||
* 02110-1301, USA.
|
||||
*
|
||||
* You can also choose to distribute this program under the terms of
|
||||
* the Unmodified Binary Distribution Licence (as given in the file
|
||||
* COPYING.UBDL), provided that you have satisfied its requirements.
|
||||
*/
|
||||
|
||||
FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
|
||||
|
||||
/** @file
|
||||
*
|
||||
* Galois/Counter Mode (GCM)
|
||||
*
|
||||
* The GCM algorithm is specified in
|
||||
*
|
||||
* https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
|
||||
* https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
|
||||
*
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <byteswap.h>
|
||||
#include <ipxe/crypto.h>
|
||||
#include <ipxe/gcm.h>
|
||||
|
||||
/**
|
||||
* GCM field polynomial
|
||||
*
|
||||
* GCM treats 128-bit blocks as polynomials in GF(2^128) with the
|
||||
* field polynomial f(x) = 1 + x + x^2 + x^7 + x^128.
|
||||
*
|
||||
* In a somewhat bloody-minded interpretation of "big-endian", the
|
||||
* constant term (with degree zero) is arbitrarily placed in the
|
||||
* leftmost bit of the big-endian binary representation (i.e. the most
|
||||
* significant bit of byte 0), thereby failing to correspond to the
|
||||
* bit ordering in any CPU architecture in existence. This
|
||||
* necessitates some wholly gratuitous byte reversals when
|
||||
* constructing the multiplication tables, since all CPUs will treat
|
||||
* bit 0 as being the least significant bit within a byte.
|
||||
*
|
||||
* The field polynomial maps to the 128-bit constant
|
||||
* 0xe1000000000000000000000000000000 (with the x^128 term outside the
|
||||
* 128-bit range), and can therefore be treated as a single-byte
|
||||
* value.
|
||||
*/
|
||||
#define GCM_POLY 0xe1
|
||||
|
||||
/**
|
||||
* Hash key for which multiplication tables are cached
|
||||
*
|
||||
* GCM operates much more efficiently with a cached multiplication
|
||||
* table, which costs 4kB per hash key. Since this exceeds the
|
||||
* available stack space, we place a single 4kB cache in .bss and
|
||||
* recalculate the cached values as required. In the common case of a
|
||||
* single HTTPS connection being used to download a (relatively) large
|
||||
* file, the same key will be used repeatedly for almost all GCM
|
||||
* operations, and so the overhead of recalculation is negligible.
|
||||
*/
|
||||
static const union gcm_block *gcm_cached_key;
|
||||
|
||||
/**
|
||||
* Cached multiplication table (M0) for Shoup's method
|
||||
*
|
||||
* Each entry within this table represents the result of multiplying
|
||||
* the cached hash key by an arbitrary 8-bit polynomial.
|
||||
*/
|
||||
static union gcm_block gcm_cached_mult[256];
|
||||
|
||||
/**
|
||||
* Cached reduction table (R) for Shoup's method
|
||||
*
|
||||
* Each entry within this table represents the result of multiplying
|
||||
* the fixed polynomial x^128 by an arbitrary 8-bit polynomial. Only
|
||||
* the leftmost 16 bits are stored, since all other bits within the
|
||||
* result will always be zero.
|
||||
*/
|
||||
static uint16_t gcm_cached_reduce[256];
|
||||
|
||||
/**
|
||||
* Reverse bits in a byte
|
||||
*
|
||||
* @v byte Byte
|
||||
* @ret etyb Bit-reversed byte
|
||||
*/
|
||||
static inline __attribute__ (( always_inline )) uint8_t
|
||||
gcm_reverse ( const uint8_t byte ) {
|
||||
uint8_t etyb = etyb;
|
||||
uint8_t mask;
|
||||
|
||||
for ( mask = 1 ; mask ; mask <<= 1 ) {
|
||||
etyb <<= 1;
|
||||
if ( byte & mask )
|
||||
etyb |= 1;
|
||||
}
|
||||
return etyb;
|
||||
}
|
||||
|
||||
/**
|
||||
* Update GCM counter
|
||||
*
|
||||
* @v ctr Counter
|
||||
* @v delta Amount to add to counter
|
||||
*/
|
||||
static inline __attribute__ (( always_inline )) void
|
||||
gcm_count ( union gcm_block *ctr, uint32_t delta ) {
|
||||
uint32_t *value = &ctr->ctr.value;
|
||||
|
||||
/* Update counter modulo 2^32 */
|
||||
*value = cpu_to_be32 ( be32_to_cpu ( *value ) + delta );
|
||||
}
|
||||
|
||||
/**
|
||||
* XOR partial data block
|
||||
*
|
||||
* @v src1 Source buffer 1
|
||||
* @v src2 Source buffer 2
|
||||
* @v dst Destination buffer
|
||||
* @v len Length
|
||||
*/
|
||||
static inline void gcm_xor ( const void *src1, const void *src2, void *dst,
|
||||
size_t len ) {
|
||||
uint8_t *dst_bytes = dst;
|
||||
const uint8_t *src1_bytes = src1;
|
||||
const uint8_t *src2_bytes = src2;
|
||||
|
||||
/* XOR one byte at a time */
|
||||
while ( len-- )
|
||||
*(dst_bytes++) = ( *(src1_bytes++) ^ *(src2_bytes++) );
|
||||
}
|
||||
|
||||
/**
|
||||
* XOR whole data block in situ
|
||||
*
|
||||
* @v src Source block
|
||||
* @v dst Destination block
|
||||
*/
|
||||
static inline void gcm_xor_block ( const union gcm_block *src,
|
||||
union gcm_block *dst ) {
|
||||
|
||||
/* XOR whole dwords */
|
||||
dst->dword[0] ^= src->dword[0];
|
||||
dst->dword[1] ^= src->dword[1];
|
||||
dst->dword[2] ^= src->dword[2];
|
||||
dst->dword[3] ^= src->dword[3];
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiply polynomial by (x)
|
||||
*
|
||||
* @v mult Multiplicand
|
||||
* @v res Result
|
||||
*/
|
||||
static void gcm_multiply_x ( const union gcm_block *mult,
|
||||
union gcm_block *res ) {
|
||||
unsigned int i;
|
||||
uint8_t byte;
|
||||
uint8_t carry;
|
||||
|
||||
/* Multiply by (x) by shifting all bits rightward */
|
||||
for ( i = 0, carry = 0 ; i < sizeof ( res->byte ) ; i++ ) {
|
||||
byte = mult->byte[i];
|
||||
res->byte[i] = ( ( carry << 7 ) | ( byte >> 1 ) );
|
||||
carry = ( byte & 0x01 );
|
||||
}
|
||||
|
||||
/* If result overflows, reduce modulo the field polynomial */
|
||||
if ( carry )
|
||||
res->byte[0] ^= GCM_POLY;
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct cached tables
|
||||
*
|
||||
* @v key Hash key
|
||||
* @v context Context
|
||||
*/
|
||||
static void gcm_cache ( const union gcm_block *key ) {
|
||||
union gcm_block *mult;
|
||||
uint16_t reduce;
|
||||
unsigned int this;
|
||||
unsigned int other;
|
||||
unsigned int i;
|
||||
|
||||
/* Calculate M0[1..255] and R[1..255]
|
||||
*
|
||||
* The R[] values are independent of the key, but the overhead
|
||||
* of recalculating them here is negligible and saves on
|
||||
* overall code size since the calculations are related.
|
||||
*/
|
||||
for ( i = 1 ; i < 256 ; i++ ) {
|
||||
|
||||
/* Reverse bit order to compensate for poor life choices */
|
||||
this = gcm_reverse ( i );
|
||||
|
||||
/* Construct entries */
|
||||
mult = &gcm_cached_mult[this];
|
||||
if ( this & 0x80 ) {
|
||||
|
||||
/* Odd number: entry[i] = entry[i - 1] + poly */
|
||||
other = ( this & 0x7f ); /* bit-reversed (i - 1) */
|
||||
gcm_xor ( key, &gcm_cached_mult[other], mult,
|
||||
sizeof ( *mult ) );
|
||||
reduce = gcm_cached_reduce[other];
|
||||
reduce ^= be16_to_cpu ( GCM_POLY << 8 );
|
||||
gcm_cached_reduce[this] = reduce;
|
||||
|
||||
} else {
|
||||
|
||||
/* Even number: entry[i] = entry[i/2] * (x) */
|
||||
other = ( this << 1 ); /* bit-reversed (i / 2) */
|
||||
gcm_multiply_x ( &gcm_cached_mult[other], mult );
|
||||
reduce = be16_to_cpu ( gcm_cached_reduce[other] );
|
||||
reduce >>= 1;
|
||||
gcm_cached_reduce[this] = cpu_to_be16 ( reduce );
|
||||
}
|
||||
}
|
||||
|
||||
/* Record cached key */
|
||||
gcm_cached_key = key;
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiply polynomial by (x^8) in situ
|
||||
*
|
||||
* @v poly Multiplicand and result
|
||||
*/
|
||||
static void gcm_multiply_x_8 ( union gcm_block *poly ) {
|
||||
uint8_t *byte;
|
||||
uint8_t msb;
|
||||
|
||||
/* Reduction table must already have been calculated */
|
||||
assert ( gcm_cached_key != NULL );
|
||||
|
||||
/* Record most significant byte */
|
||||
byte = &poly->byte[ sizeof ( poly->byte ) - 1 ];
|
||||
msb = *byte;
|
||||
|
||||
/* Multiply least significant bytes by shifting */
|
||||
for ( ; byte > &poly->byte[0] ; byte-- )
|
||||
*byte = *( byte - 1 );
|
||||
*byte = 0;
|
||||
|
||||
/* Multiply most significant byte via reduction table */
|
||||
poly->word[0] ^= gcm_cached_reduce[msb];
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiply polynomial by hash key in situ
|
||||
*
|
||||
* @v key Hash key
|
||||
* @v poly Multiplicand and result
|
||||
*/
|
||||
static void gcm_multiply_key ( const union gcm_block *key,
|
||||
union gcm_block *poly ) {
|
||||
union gcm_block res;
|
||||
uint8_t *byte;
|
||||
|
||||
/* Construct tables, if necessary */
|
||||
if ( gcm_cached_key != key )
|
||||
gcm_cache ( key );
|
||||
|
||||
/* Multiply using Shoup's algorithm */
|
||||
byte = &poly->byte[ sizeof ( poly->byte ) - 1 ];
|
||||
memcpy ( &res, &gcm_cached_mult[ *byte ], sizeof ( res ) );
|
||||
for ( byte-- ; byte >= &poly->byte[0] ; byte-- ) {
|
||||
gcm_multiply_x_8 ( &res );
|
||||
gcm_xor_block ( &gcm_cached_mult[ *byte ], &res );
|
||||
}
|
||||
|
||||
/* Overwrite result */
|
||||
memcpy ( poly, &res, sizeof ( *poly ) );
|
||||
}
|
||||
|
||||
/**
|
||||
* Encrypt/decrypt/authenticate data
|
||||
*
|
||||
* @v context Context
|
||||
* @v src Input data, or NULL to process additional data
|
||||
* @v dst Output data, or NULL to process additional data
|
||||
* @v hash Hash input data
|
||||
* @v len Length of data
|
||||
*/
|
||||
static void gcm_process ( struct gcm_context *context, const void *src,
|
||||
void *dst, const void *hash, size_t len ) {
|
||||
union gcm_block tmp;
|
||||
uint64_t *total;
|
||||
size_t frag_len;
|
||||
unsigned int block;
|
||||
|
||||
/* Sanity checks */
|
||||
assert ( hash != NULL );
|
||||
assert ( ( ( src == NULL ) && ( dst == NULL ) ) ||
|
||||
( ( hash == src ) || ( hash == dst ) ) );
|
||||
|
||||
/* Calculate block number (for debugging) */
|
||||
block = ( ( ( context->len.len.add + 8 * sizeof ( tmp ) - 1 ) /
|
||||
( 8 * sizeof ( tmp ) ) ) +
|
||||
( ( context->len.len.data + 8 * sizeof ( tmp ) - 1 ) /
|
||||
( 8 * sizeof ( tmp ) ) ) + 1 );
|
||||
|
||||
/* Update total length (in bits) */
|
||||
total = ( src ? &context->len.len.data : &context->len.len.add );
|
||||
*total += ( len * 8 );
|
||||
|
||||
/* Process data */
|
||||
for ( ; len ; hash += frag_len, len -= frag_len, block++ ) {
|
||||
|
||||
/* Calculate fragment length */
|
||||
frag_len = len;
|
||||
if ( frag_len > sizeof ( tmp ) )
|
||||
frag_len = sizeof ( tmp );
|
||||
|
||||
/* Encrypt/decrypt block, if applicable */
|
||||
if ( dst ) {
|
||||
|
||||
/* Increment counter */
|
||||
gcm_count ( &context->ctr, 1 );
|
||||
|
||||
/* Encrypt counter */
|
||||
DBGC2 ( context, "GCM %p Y[%d]:\n", context, block );
|
||||
DBGC2_HDA ( context, 0, &context->ctr,
|
||||
sizeof ( context->ctr ) );
|
||||
cipher_encrypt ( context->raw_cipher, &context->raw_ctx,
|
||||
&context->ctr, &tmp, sizeof ( tmp ) );
|
||||
DBGC2 ( context, "GCM %p E(K,Y[%d]):\n",
|
||||
context, block );
|
||||
DBGC2_HDA ( context, 0, &tmp, sizeof ( tmp ) );
|
||||
|
||||
/* Encrypt/decrypt data */
|
||||
gcm_xor ( src, &tmp, dst, frag_len );
|
||||
src += frag_len;
|
||||
dst += frag_len;
|
||||
}
|
||||
|
||||
/* Update hash */
|
||||
gcm_xor ( hash, &context->hash, &context->hash, frag_len );
|
||||
gcm_multiply_key ( &context->key, &context->hash );
|
||||
DBGC2 ( context, "GCM %p X[%d]:\n", context, block );
|
||||
DBGC2_HDA ( context, 0, &context->hash,
|
||||
sizeof ( context->hash ) );
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct hash
|
||||
*
|
||||
* @v context Context
|
||||
* @v hash Hash to fill in
|
||||
*/
|
||||
static void gcm_hash ( struct gcm_context *context, union gcm_block *hash ) {
|
||||
|
||||
/* Construct big-endian lengths block */
|
||||
hash->len.add = cpu_to_be64 ( context->len.len.add );
|
||||
hash->len.data = cpu_to_be64 ( context->len.len.data );
|
||||
DBGC2 ( context, "GCM %p len(A)||len(C):\n", context );
|
||||
DBGC2_HDA ( context, 0, hash, sizeof ( *hash ) );
|
||||
|
||||
/* Update hash */
|
||||
gcm_xor_block ( &context->hash, hash );
|
||||
gcm_multiply_key ( &context->key, hash );
|
||||
DBGC2 ( context, "GCM %p GHASH(H,A,C):\n", context );
|
||||
DBGC2_HDA ( context, 0, hash, sizeof ( *hash ) );
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct tag
|
||||
*
|
||||
* @v context Context
|
||||
* @v tag Tag
|
||||
*/
|
||||
void gcm_tag ( struct gcm_context *context, union gcm_block *tag ) {
|
||||
union gcm_block tmp;
|
||||
uint32_t offset;
|
||||
|
||||
/* Construct hash */
|
||||
gcm_hash ( context, tag );
|
||||
|
||||
/* Construct encrypted initial counter value */
|
||||
memcpy ( &tmp, &context->ctr, sizeof ( tmp ) );
|
||||
offset = ( ( -context->len.len.data ) / ( 8 * sizeof ( tmp ) ) );
|
||||
gcm_count ( &tmp, offset );
|
||||
cipher_encrypt ( context->raw_cipher, &context->raw_ctx, &tmp,
|
||||
&tmp, sizeof ( tmp ) );
|
||||
DBGC2 ( context, "GCM %p E(K,Y[0]):\n", context );
|
||||
DBGC2_HDA ( context, 0, &tmp, sizeof ( tmp ) );
|
||||
|
||||
/* Construct tag */
|
||||
gcm_xor_block ( &tmp, tag );
|
||||
DBGC2 ( context, "GCM %p T:\n", context );
|
||||
DBGC2_HDA ( context, 0, tag, sizeof ( *tag ) );
|
||||
}
|
||||
|
||||
/**
|
||||
* Set key
|
||||
*
|
||||
* @v context Context
|
||||
* @v key Key
|
||||
* @v keylen Key length
|
||||
* @v raw_cipher Underlying cipher
|
||||
* @ret rc Return status code
|
||||
*/
|
||||
int gcm_setkey ( struct gcm_context *context, const void *key, size_t keylen,
|
||||
struct cipher_algorithm *raw_cipher ) {
|
||||
int rc;
|
||||
|
||||
/* Initialise GCM context */
|
||||
memset ( context, 0, sizeof ( *context ) );
|
||||
context->raw_cipher = raw_cipher;
|
||||
|
||||
/* Set underlying block cipher key */
|
||||
if ( ( rc = cipher_setkey ( raw_cipher, context->raw_ctx, key,
|
||||
keylen ) ) != 0 )
|
||||
return rc;
|
||||
|
||||
/* Construct GCM hash key */
|
||||
cipher_encrypt ( raw_cipher, context->raw_ctx, &context->ctr,
|
||||
&context->key, sizeof ( context->key ) );
|
||||
DBGC2 ( context, "GCM %p H:\n", context );
|
||||
DBGC2_HDA ( context, 0, &context->key, sizeof ( context->key ) );
|
||||
|
||||
/* Reset counter */
|
||||
context->ctr.ctr.value = cpu_to_be32 ( 1 );
|
||||
|
||||
/* Construct cached tables */
|
||||
gcm_cache ( &context->key );
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set initialisation vector
|
||||
*
|
||||
* @v ctx Context
|
||||
* @v iv Initialisation vector
|
||||
* @v ivlen Initialisation vector length
|
||||
*/
|
||||
void gcm_setiv ( struct gcm_context *context, const void *iv, size_t ivlen ) {
|
||||
|
||||
/* Reset counter */
|
||||
memset ( context->ctr.ctr.iv, 0, sizeof ( context->ctr.ctr.iv ) );
|
||||
context->ctr.ctr.value = cpu_to_be32 ( 1 );
|
||||
|
||||
/* Process initialisation vector */
|
||||
if ( ivlen == sizeof ( context->ctr.ctr.iv ) ) {
|
||||
|
||||
/* Initialisation vector is exactly 96 bits, use it as-is */
|
||||
memcpy ( context->ctr.ctr.iv, iv, ivlen );
|
||||
|
||||
} else {
|
||||
|
||||
/* Calculate hash over initialisation vector */
|
||||
gcm_process ( context, iv, NULL, iv, ivlen );
|
||||
gcm_hash ( context, &context->ctr );
|
||||
|
||||
/* Reset accumulated hash */
|
||||
memset ( &context->hash, 0, sizeof ( context->hash ) );
|
||||
|
||||
/* Reset data lengths */
|
||||
assert ( context->len.len.add == 0 );
|
||||
context->len.len.data = 0;
|
||||
}
|
||||
|
||||
DBGC2 ( context, "GCM %p Y[0]:\n", context );
|
||||
DBGC2_HDA ( context, 0, &context->ctr, sizeof ( context->ctr ) );
|
||||
}
|
||||
|
||||
/**
|
||||
* Encrypt data
|
||||
*
|
||||
* @v context Context
|
||||
* @v src Data to encrypt
|
||||
* @v dst Buffer for encrypted data, or NULL for additional data
|
||||
* @v len Length of data
|
||||
*/
|
||||
void gcm_encrypt ( struct gcm_context *context, const void *src, void *dst,
|
||||
size_t len ) {
|
||||
const void *hash;
|
||||
|
||||
/* Determine hash input */
|
||||
if ( dst ) {
|
||||
/* Encrypting: hash the encrypted data */
|
||||
hash = dst;
|
||||
} else {
|
||||
/* Authenticating: hash the input data */
|
||||
hash = src;
|
||||
src = NULL;
|
||||
}
|
||||
|
||||
/* Process data */
|
||||
gcm_process ( context, src, dst, hash, len );
|
||||
}
|
||||
|
||||
/**
|
||||
* Decrypt data
|
||||
*
|
||||
* @v context Context
|
||||
* @v src Data to decrypt
|
||||
* @v dst Buffer for decrypted data, or NULL for additional data
|
||||
* @v len Length of data
|
||||
*/
|
||||
void gcm_decrypt ( struct gcm_context *context, const void *src, void *dst,
|
||||
size_t len ) {
|
||||
const void *hash;
|
||||
|
||||
/* Determine hash input */
|
||||
hash = src;
|
||||
if ( ! dst ) {
|
||||
/* Authenticating: only hash */
|
||||
src = NULL;
|
||||
}
|
||||
|
||||
/* Process data */
|
||||
gcm_process ( context, src, dst, hash, len );
|
||||
}
|
||||
Reference in New Issue
Block a user