[crypto] Support direct reduction only for Montgomery constant R^2 mod N

The only remaining use case for direct reduction (outside of the unit
tests) is in calculating the constant R^2 mod N used during Montgomery
multiplication.

The current implementation of direct reduction requires a writable
copy of the modulus (to allow for shifting), and both the modulus and
the result buffer must be padded to be large enough to hold (R^2 - N),
which is twice the size of the actual values involved.

For the special case of reducing R^2 mod N (or any power of two mod
N), we can run the same algorithm without needing either a writable
copy of the modulus or a padded result buffer.  The working state
required is only two bits larger than the result buffer, and these
additional bits may be held in local variables instead.

Rewrite bigint_reduce() to handle only this use case, and remove the
no longer necessary uses of double-sized big integers.

Signed-off-by: Michael Brown <mcb30@ipxe.org>
This commit is contained in:
Michael Brown
2025-02-13 13:35:45 +00:00
parent 5056e8ad93
commit 8e6b914c53
4 changed files with 247 additions and 259 deletions

View File

@@ -146,6 +146,28 @@ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
bigint_is_geq_raw ( (value)->element, (reference)->element, \
size ); } )
/**
* Set bit in big integer
*
* @v value Big integer
* @v bit Bit to set
*/
#define bigint_set_bit( value, bit ) do { \
unsigned int size = bigint_size (value); \
bigint_set_bit_raw ( (value)->element, size, bit ); \
} while ( 0 )
/**
* Clear bit in big integer
*
* @v value Big integer
* @v bit Bit to set
*/
#define bigint_clear_bit( value, bit ) do { \
unsigned int size = bigint_size (value); \
bigint_clear_bit_raw ( (value)->element, size, bit ); \
} while ( 0 )
/**
* Test if bit is set in big integer
*
@@ -243,29 +265,17 @@ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
} while ( 0 )
/**
* Reduce big integer
* Reduce big integer R^2 modulo N
*
* @v modulus Big integer modulus
* @v value Big integer to be reduced
* @v result Big integer to hold result
*/
#define bigint_reduce( modulus, value ) do { \
#define bigint_reduce( modulus, result ) do { \
unsigned int size = bigint_size (modulus); \
bigint_reduce_raw ( (modulus)->element, (value)->element, \
bigint_reduce_raw ( (modulus)->element, (result)->element, \
size ); \
} while ( 0 )
/**
* Reduce supremum of big integer representation
*
* @v modulus0 Big integer modulus
* @v result0 Big integer to hold result
*/
#define bigint_reduce_supremum( modulus, result ) do { \
unsigned int size = bigint_size (modulus); \
bigint_reduce_supremum_raw ( (modulus)->element, \
(result)->element, size ); \
} while ( 0 )
/**
* Compute inverse of odd big integer modulo any power of two
*
@@ -369,6 +379,42 @@ typedef void ( bigint_ladder_op_t ) ( const bigint_element_t *operand0,
unsigned int size, const void *ctx,
void *tmp );
/**
* Set bit in big integer
*
* @v value0 Element 0 of big integer
* @v size Number of elements
* @v bit Bit to set
*/
static inline __attribute__ (( always_inline )) void
bigint_set_bit_raw ( bigint_element_t *value0, unsigned int size,
unsigned int bit ) {
bigint_t ( size ) __attribute__ (( may_alias )) *value =
( ( void * ) value0 );
unsigned int index = ( bit / ( 8 * sizeof ( value->element[0] ) ) );
unsigned int subindex = ( bit % ( 8 * sizeof ( value->element[0] ) ) );
value->element[index] |= ( 1UL << subindex );
}
/**
* Clear bit in big integer
*
* @v value0 Element 0 of big integer
* @v size Number of elements
* @v bit Bit to clear
*/
static inline __attribute__ (( always_inline )) void
bigint_clear_bit_raw ( bigint_element_t *value0, unsigned int size,
unsigned int bit ) {
bigint_t ( size ) __attribute__ (( may_alias )) *value =
( ( void * ) value0 );
unsigned int index = ( bit / ( 8 * sizeof ( value->element[0] ) ) );
unsigned int subindex = ( bit % ( 8 * sizeof ( value->element[0] ) ) );
value->element[index] &= ~( 1UL << subindex );
}
/**
* Test if bit is set in big integer
*
@@ -442,11 +488,8 @@ void bigint_multiply_raw ( const bigint_element_t *multiplicand0,
const bigint_element_t *multiplier0,
unsigned int multiplier_size,
bigint_element_t *result0 );
void bigint_reduce_raw ( bigint_element_t *modulus0, bigint_element_t *value0,
unsigned int size );
void bigint_reduce_supremum_raw ( bigint_element_t *modulus0,
bigint_element_t *value0,
unsigned int size );
void bigint_reduce_raw ( const bigint_element_t *modulus0,
bigint_element_t *result0, unsigned int size );
void bigint_mod_invert_raw ( const bigint_element_t *invertend0,
bigint_element_t *inverse0, unsigned int size );
int bigint_montgomery_relaxed_raw ( const bigint_element_t *modulus0,