[crypto] Eliminate temporary working space for bigint_mod_invert()

With a slight modification to the algorithm to ignore bits of the
residue that can never contribute to the result, it is possible to
reuse the as-yet uncalculated portions of the inverse to hold the
residue.  This removes the requirement for additional temporary
working space.

Signed-off-by: Michael Brown <mcb30@ipxe.org>
This commit is contained in:
Michael Brown
2024-11-27 12:51:04 +00:00
parent 9cbf5c4f86
commit 7c2e68cc87
3 changed files with 65 additions and 46 deletions

View File

@@ -287,27 +287,22 @@ void bigint_reduce_raw ( bigint_element_t *modulus0, bigint_element_t *value0,
* @v invertend0 Element 0 of odd big integer to be inverted
* @v inverse0 Element 0 of big integer to hold result
* @v size Number of elements in invertend and result
* @v tmp Temporary working space
*/
void bigint_mod_invert_raw ( const bigint_element_t *invertend0,
bigint_element_t *inverse0,
unsigned int size, void *tmp ) {
bigint_element_t *inverse0, unsigned int size ) {
const bigint_t ( size ) __attribute__ (( may_alias ))
*invertend = ( ( const void * ) invertend0 );
bigint_t ( size ) __attribute__ (( may_alias ))
*inverse = ( ( void * ) inverse0 );
struct {
bigint_t ( size ) residue;
} *temp = tmp;
const unsigned int width = ( 8 * sizeof ( bigint_element_t ) );
bigint_element_t accum;
bigint_element_t bit;
unsigned int i;
/* Sanity check */
assert ( invertend->element[0] & 1 );
assert ( bigint_bit_is_set ( invertend, 0 ) );
/* Initialise temporary working space and output value */
memset ( &temp->residue, 0xff, sizeof ( temp->residue ) );
memset ( inverse, 0, sizeof ( *inverse ) );
/* Initialise output */
memset ( inverse, 0xff, sizeof ( *inverse ) );
/* Compute inverse modulo 2^(width)
*
@@ -315,23 +310,47 @@ void bigint_mod_invert_raw ( const bigint_element_t *invertend0,
* presented in "A New Algorithm for Inversion mod p^k (Koç,
* 2017)".
*
* Each loop iteration calculates one bit of the inverse. The
* residue value is the two's complement negation of the value
* "b" as used by Koç, to allow for division by two using a
* logical right shift (since we have no arithmetic right
* shift operation for big integers).
* Each inner loop iteration calculates one bit of the
* inverse. The residue value is the two's complement
* negation of the value "b" as used by Koç, to allow for
* division by two using a logical right shift (since we have
* no arithmetic right shift operation for big integers).
*
* The residue is stored in the as-yet uncalculated portion of
* the inverse. The size of the residue therefore decreases
* by one element for each outer loop iteration. Trivial
* inspection of the algorithm shows that any higher bits
* could not contribute to the eventual output value, and so
* we may safely reuse storage this way.
*
* Due to the suffix property of inverses mod 2^k, the result
* represents the least significant bits of the inverse modulo
* an arbitrarily large 2^k.
*/
for ( i = 0 ; i < ( 8 * sizeof ( *inverse ) ) ; i++ ) {
if ( temp->residue.element[0] & 1 ) {
inverse->element[ i / width ] |=
( 1UL << ( i % width ) );
bigint_add ( invertend, &temp->residue );
for ( i = size ; i > 0 ; i-- ) {
const bigint_t ( i ) __attribute__ (( may_alias ))
*addend = ( ( const void * ) invertend );
bigint_t ( i ) __attribute__ (( may_alias ))
*residue = ( ( void * ) inverse );
/* Calculate one element's worth of inverse bits */
for ( accum = 0, bit = 1 ; bit ; bit <<= 1 ) {
if ( bigint_bit_is_set ( residue, 0 ) ) {
accum |= bit;
bigint_add ( addend, residue );
}
bigint_shr ( residue );
}
bigint_shr ( &temp->residue );
/* Store in the element no longer required to hold residue */
inverse->element[ i - 1 ] = accum;
}
/* Correct order of inverse elements */
for ( i = 0 ; i < ( size / 2 ) ; i++ ) {
accum = inverse->element[i];
inverse->element[i] = inverse->element[ size - 1 - i ];
inverse->element[ size - 1 - i ] = accum;
}
}