mirror of
https://github.com/ipxe/ipxe
synced 2026-01-30 04:58:12 +03:00
[crypto] Separate out bigint_reduce() from bigint_mod_multiply()
Faster modular multiplication algorithms such as Montgomery multiplication will still require the ability to perform a single direct modular reduction. Neaten up the implementation of direct reduction and split it out into a separate bigint_reduce() function, complete with its own unit tests. Signed-off-by: Michael Brown <mcb30@ipxe.org>
This commit is contained in:
@@ -185,6 +185,21 @@ void bigint_multiply_sample ( const bigint_element_t *multiplicand0,
|
||||
bigint_multiply ( multiplicand, multiplier, result );
|
||||
}
|
||||
|
||||
void bigint_reduce_sample ( const bigint_element_t *minuend0,
|
||||
unsigned int minuend_size,
|
||||
const bigint_element_t *modulus0,
|
||||
unsigned int modulus_size,
|
||||
bigint_element_t *result0, void *tmp ) {
|
||||
const bigint_t ( minuend_size ) __attribute__ (( may_alias ))
|
||||
*minuend = ( ( const void * ) minuend0 );
|
||||
const bigint_t ( modulus_size ) __attribute__ (( may_alias ))
|
||||
*modulus = ( ( const void * ) modulus0 );
|
||||
bigint_t ( modulus_size ) __attribute__ (( may_alias ))
|
||||
*result = ( ( void * ) result0 );
|
||||
|
||||
bigint_reduce ( minuend, modulus, result, tmp );
|
||||
}
|
||||
|
||||
void bigint_mod_multiply_sample ( const bigint_element_t *multiplicand0,
|
||||
const bigint_element_t *multiplier0,
|
||||
const bigint_element_t *modulus0,
|
||||
@@ -516,6 +531,48 @@ void bigint_mod_exp_sample ( const bigint_element_t *base0,
|
||||
sizeof ( result_raw ) ) == 0 ); \
|
||||
} while ( 0 )
|
||||
|
||||
/**
|
||||
* Report result of big integer modular direct reduction test
|
||||
*
|
||||
* @v minuend Big integer to be reduced
|
||||
* @v modulus Big integer modulus
|
||||
* @v expected Big integer expected result
|
||||
*/
|
||||
#define bigint_reduce_ok( minuend, modulus, expected ) do { \
|
||||
static const uint8_t minuend_raw[] = minuend; \
|
||||
static const uint8_t modulus_raw[] = modulus; \
|
||||
static const uint8_t expected_raw[] = expected; \
|
||||
uint8_t result_raw[ sizeof ( expected_raw ) ]; \
|
||||
unsigned int minuend_size = \
|
||||
bigint_required_size ( sizeof ( minuend_raw ) ); \
|
||||
unsigned int modulus_size = \
|
||||
bigint_required_size ( sizeof ( modulus_raw ) ); \
|
||||
bigint_t ( minuend_size ) minuend_temp; \
|
||||
bigint_t ( modulus_size ) modulus_temp; \
|
||||
bigint_t ( modulus_size ) result_temp; \
|
||||
size_t tmp_len = bigint_reduce_tmp_len ( &minuend_temp ); \
|
||||
uint8_t tmp[tmp_len]; \
|
||||
{} /* Fix emacs alignment */ \
|
||||
\
|
||||
assert ( bigint_size ( &result_temp ) == \
|
||||
bigint_size ( &modulus_temp ) ); \
|
||||
bigint_init ( &minuend_temp, minuend_raw, \
|
||||
sizeof ( minuend_raw ) ); \
|
||||
bigint_init ( &modulus_temp, modulus_raw, \
|
||||
sizeof ( modulus_raw ) ); \
|
||||
DBG ( "Modular reduce:\n" ); \
|
||||
DBG_HDA ( 0, &minuend_temp, sizeof ( minuend_temp ) ); \
|
||||
DBG_HDA ( 0, &modulus_temp, sizeof ( modulus_temp ) ); \
|
||||
bigint_reduce ( &minuend_temp, &modulus_temp, &result_temp, \
|
||||
tmp ); \
|
||||
DBG_HDA ( 0, &result_temp, sizeof ( result_temp ) ); \
|
||||
bigint_done ( &result_temp, result_raw, \
|
||||
sizeof ( result_raw ) ); \
|
||||
\
|
||||
ok ( memcmp ( result_raw, expected_raw, \
|
||||
sizeof ( result_raw ) ) == 0 ); \
|
||||
} while ( 0 )
|
||||
|
||||
/**
|
||||
* Report result of big integer modular multiplication test
|
||||
*
|
||||
@@ -1674,6 +1731,35 @@ static void bigint_test_exec ( void ) {
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x01 ) );
|
||||
bigint_reduce_ok ( BIGINT ( 0x00 ),
|
||||
BIGINT ( 0xaf ),
|
||||
BIGINT ( 0x00 ) );
|
||||
bigint_reduce_ok ( BIGINT ( 0xab ),
|
||||
BIGINT ( 0xab ),
|
||||
BIGINT ( 0x00 ) );
|
||||
bigint_reduce_ok ( BIGINT ( 0x1d, 0x97, 0x63, 0xc9, 0x97, 0xcd, 0x43,
|
||||
0xcb, 0x8e, 0x71, 0xac, 0x41, 0xdd ),
|
||||
BIGINT ( 0xcc, 0x9d, 0xa0, 0x79, 0x96, 0x6a, 0x46,
|
||||
0xd5, 0xb4, 0x30, 0xd2, 0x2b, 0xbf ),
|
||||
BIGINT ( 0x1d, 0x97, 0x63, 0xc9, 0x97, 0xcd, 0x43,
|
||||
0xcb, 0x8e, 0x71, 0xac, 0x41, 0xdd ) );
|
||||
bigint_reduce_ok ( BIGINT ( 0x21, 0xfa, 0x4f, 0xce, 0x0f, 0x0f, 0x4d,
|
||||
0x43, 0xaa, 0xad, 0x21, 0x30, 0xe5 ),
|
||||
BIGINT ( 0x21, 0xfa, 0x4f, 0xce, 0x0f, 0x0f, 0x4d,
|
||||
0x43, 0xaa, 0xad, 0x21, 0x30, 0xe5 ),
|
||||
BIGINT ( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ) );
|
||||
bigint_reduce_ok ( BIGINT ( 0xf9, 0x78, 0x96, 0x39, 0xee, 0x98, 0x42,
|
||||
0x6a, 0xb8, 0x74, 0x0b, 0xe8, 0x5c, 0x76,
|
||||
0x34, 0xaf ),
|
||||
BIGINT ( 0xf3, 0x65, 0x35, 0x41, 0x66, 0x65 ),
|
||||
BIGINT ( 0xb3, 0x07, 0xe8, 0xb7, 0x01, 0xf6 ) );
|
||||
bigint_reduce_ok ( BIGINT ( 0xfe, 0x30, 0xe1, 0xc6, 0x65, 0x97, 0x48,
|
||||
0x2e, 0x94, 0xd4 ),
|
||||
BIGINT ( 0x47, 0xaa, 0x88, 0x00, 0xd0, 0x30, 0x62,
|
||||
0xfb, 0x5d, 0x55 ),
|
||||
BIGINT ( 0x27, 0x31, 0x49, 0xc3, 0xf5, 0x06, 0x1f,
|
||||
0x3c, 0x7c, 0xd5 ) );
|
||||
bigint_mod_multiply_ok ( BIGINT ( 0x37 ),
|
||||
BIGINT ( 0x67 ),
|
||||
BIGINT ( 0x3f ),
|
||||
|
||||
Reference in New Issue
Block a user