[crypto] Separate out bigint_reduce() from bigint_mod_multiply()

Faster modular multiplication algorithms such as Montgomery
multiplication will still require the ability to perform a single
direct modular reduction.

Neaten up the implementation of direct reduction and split it out into
a separate bigint_reduce() function, complete with its own unit tests.

Signed-off-by: Michael Brown <mcb30@ipxe.org>
This commit is contained in:
Michael Brown
2024-10-15 13:50:51 +01:00
parent f78c5a763c
commit 2bf16c6ffc
3 changed files with 296 additions and 37 deletions

View File

@@ -185,6 +185,21 @@ void bigint_multiply_sample ( const bigint_element_t *multiplicand0,
bigint_multiply ( multiplicand, multiplier, result );
}
void bigint_reduce_sample ( const bigint_element_t *minuend0,
unsigned int minuend_size,
const bigint_element_t *modulus0,
unsigned int modulus_size,
bigint_element_t *result0, void *tmp ) {
const bigint_t ( minuend_size ) __attribute__ (( may_alias ))
*minuend = ( ( const void * ) minuend0 );
const bigint_t ( modulus_size ) __attribute__ (( may_alias ))
*modulus = ( ( const void * ) modulus0 );
bigint_t ( modulus_size ) __attribute__ (( may_alias ))
*result = ( ( void * ) result0 );
bigint_reduce ( minuend, modulus, result, tmp );
}
void bigint_mod_multiply_sample ( const bigint_element_t *multiplicand0,
const bigint_element_t *multiplier0,
const bigint_element_t *modulus0,
@@ -516,6 +531,48 @@ void bigint_mod_exp_sample ( const bigint_element_t *base0,
sizeof ( result_raw ) ) == 0 ); \
} while ( 0 )
/**
* Report result of big integer modular direct reduction test
*
* @v minuend Big integer to be reduced
* @v modulus Big integer modulus
* @v expected Big integer expected result
*/
#define bigint_reduce_ok( minuend, modulus, expected ) do { \
static const uint8_t minuend_raw[] = minuend; \
static const uint8_t modulus_raw[] = modulus; \
static const uint8_t expected_raw[] = expected; \
uint8_t result_raw[ sizeof ( expected_raw ) ]; \
unsigned int minuend_size = \
bigint_required_size ( sizeof ( minuend_raw ) ); \
unsigned int modulus_size = \
bigint_required_size ( sizeof ( modulus_raw ) ); \
bigint_t ( minuend_size ) minuend_temp; \
bigint_t ( modulus_size ) modulus_temp; \
bigint_t ( modulus_size ) result_temp; \
size_t tmp_len = bigint_reduce_tmp_len ( &minuend_temp ); \
uint8_t tmp[tmp_len]; \
{} /* Fix emacs alignment */ \
\
assert ( bigint_size ( &result_temp ) == \
bigint_size ( &modulus_temp ) ); \
bigint_init ( &minuend_temp, minuend_raw, \
sizeof ( minuend_raw ) ); \
bigint_init ( &modulus_temp, modulus_raw, \
sizeof ( modulus_raw ) ); \
DBG ( "Modular reduce:\n" ); \
DBG_HDA ( 0, &minuend_temp, sizeof ( minuend_temp ) ); \
DBG_HDA ( 0, &modulus_temp, sizeof ( modulus_temp ) ); \
bigint_reduce ( &minuend_temp, &modulus_temp, &result_temp, \
tmp ); \
DBG_HDA ( 0, &result_temp, sizeof ( result_temp ) ); \
bigint_done ( &result_temp, result_raw, \
sizeof ( result_raw ) ); \
\
ok ( memcmp ( result_raw, expected_raw, \
sizeof ( result_raw ) ) == 0 ); \
} while ( 0 )
/**
* Report result of big integer modular multiplication test
*
@@ -1674,6 +1731,35 @@ static void bigint_test_exec ( void ) {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x01 ) );
bigint_reduce_ok ( BIGINT ( 0x00 ),
BIGINT ( 0xaf ),
BIGINT ( 0x00 ) );
bigint_reduce_ok ( BIGINT ( 0xab ),
BIGINT ( 0xab ),
BIGINT ( 0x00 ) );
bigint_reduce_ok ( BIGINT ( 0x1d, 0x97, 0x63, 0xc9, 0x97, 0xcd, 0x43,
0xcb, 0x8e, 0x71, 0xac, 0x41, 0xdd ),
BIGINT ( 0xcc, 0x9d, 0xa0, 0x79, 0x96, 0x6a, 0x46,
0xd5, 0xb4, 0x30, 0xd2, 0x2b, 0xbf ),
BIGINT ( 0x1d, 0x97, 0x63, 0xc9, 0x97, 0xcd, 0x43,
0xcb, 0x8e, 0x71, 0xac, 0x41, 0xdd ) );
bigint_reduce_ok ( BIGINT ( 0x21, 0xfa, 0x4f, 0xce, 0x0f, 0x0f, 0x4d,
0x43, 0xaa, 0xad, 0x21, 0x30, 0xe5 ),
BIGINT ( 0x21, 0xfa, 0x4f, 0xce, 0x0f, 0x0f, 0x4d,
0x43, 0xaa, 0xad, 0x21, 0x30, 0xe5 ),
BIGINT ( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ) );
bigint_reduce_ok ( BIGINT ( 0xf9, 0x78, 0x96, 0x39, 0xee, 0x98, 0x42,
0x6a, 0xb8, 0x74, 0x0b, 0xe8, 0x5c, 0x76,
0x34, 0xaf ),
BIGINT ( 0xf3, 0x65, 0x35, 0x41, 0x66, 0x65 ),
BIGINT ( 0xb3, 0x07, 0xe8, 0xb7, 0x01, 0xf6 ) );
bigint_reduce_ok ( BIGINT ( 0xfe, 0x30, 0xe1, 0xc6, 0x65, 0x97, 0x48,
0x2e, 0x94, 0xd4 ),
BIGINT ( 0x47, 0xaa, 0x88, 0x00, 0xd0, 0x30, 0x62,
0xfb, 0x5d, 0x55 ),
BIGINT ( 0x27, 0x31, 0x49, 0xc3, 0xf5, 0x06, 0x1f,
0x3c, 0x7c, 0xd5 ) );
bigint_mod_multiply_ok ( BIGINT ( 0x37 ),
BIGINT ( 0x67 ),
BIGINT ( 0x3f ),