Restructured PCI subsystem to fit the new device model.

Generic PCI code now handles 64-bit BARs correctly when setting
"membase"; drivers should need to call pci_bar_start() only if they want
to use BARs other than the first memory or I/O BAR.

Split rarely-used PCI functions out into pciextra.c.

Core PCI code is now 662 bytes (down from 1308 bytes in Etherboot 5.4).
284 bytes of this saving comes from the pci/pciextra split.

Cosmetic changes to lots of drivers (e.g. vendor_id->vendor in order to
match the names used in Linux).
This commit is contained in:
Michael Brown
2006-05-16 15:12:06 +00:00
parent fcdab6299c
commit 15ee09ed10
35 changed files with 552 additions and 542 deletions

View File

@@ -1,367 +1,339 @@
#include "stdint.h"
#include "string.h"
#include "console.h"
#include "nic.h"
/*
* Copyright (C) 2006 Michael Brown <mbrown@fensystems.co.uk>.
*
* Based in part on pci.c from Etherboot 5.4, by Ken Yap and David
* Munro, in turn based on the Linux kernel's PCI implementation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <stdint.h>
#include <string.h>
#include <errno.h>
#include <malloc.h>
#include <gpxe/tables.h>
#include <gpxe/device.h>
#include <gpxe/pci.h>
/*
* pci_io.c may know how many buses we have, in which case it can
* overwrite this value.
/** @file
*
* PCI bus
*
*/
static struct pci_driver pci_drivers[0] __table_start ( pci_drivers );
static struct pci_driver pci_drivers_end[0] __table_end ( pci_drivers );
static void pcibus_remove ( struct root_device *rootdev );
/**
* Maximum PCI bus number
*
* Architecture-specific code may know how many buses we have, in
* which case it can overwrite this value.
*
*/
unsigned int pci_max_bus = 0xff;
/*
* Increment a bus_loc structure to the next possible PCI location.
* Leave the structure zeroed and return 0 if there are no more valid
* locations.
/**
* Read PCI BAR
*
* @v pci PCI device
* @v reg PCI register number
* @ret bar Base address register
*
* Reads the specified PCI base address register, including the flags
* portion. 64-bit BARs will be handled automatically. If the value
* of the 64-bit BAR exceeds the size of an unsigned long (i.e. if the
* high dword is non-zero on a 32-bit platform), then the value
* returned will be zero plus the flags for a 64-bit BAR. Unreachable
* 64-bit BARs are therefore returned as uninitialised 64-bit BARs.
*/
static int pci_next_location ( struct bus_loc *bus_loc ) {
struct pci_loc *pci_loc = ( struct pci_loc * ) bus_loc;
/*
* Ensure that there is sufficient space in the shared bus
* structures for a struct pci_loc and a struct
* pci_dev, as mandated by bus.h.
*
*/
BUS_LOC_CHECK ( struct pci_loc );
BUS_DEV_CHECK ( struct pci_device );
static unsigned long pci_bar ( struct pci_device *pci, unsigned int reg ) {
uint32_t low;
uint32_t high;
return ( ++pci_loc->busdevfn );
}
/*
* Fill in parameters (vendor & device ids, class, membase etc.) for a
* PCI device based on bus & devfn.
*
* Returns 1 if a device was found, 0 for no device present.
*
*/
static int pci_fill_device ( struct bus_dev *bus_dev,
struct bus_loc *bus_loc ) {
struct pci_loc *pci_loc = ( struct pci_loc * ) bus_loc;
struct pci_device *pci = ( struct pci_device * ) bus_dev;
uint16_t busdevfn = pci_loc->busdevfn;
static struct {
uint16_t busdevfn0;
int is_present;
} cache = { 0, 1 };
uint32_t l;
int reg;
/* Store busdevfn in struct pci_device and set default values */
pci->busdevfn = busdevfn;
pci->name = "?";
/* Check bus is within range */
if ( PCI_BUS ( busdevfn ) > pci_max_bus ) {
return 0;
}
/* Check to see if we've cached the result that this is a
* non-zero function on a non-existent card. This is done to
* increase scan speed by a factor of 8.
*/
if ( ( PCI_FUNC ( busdevfn ) != 0 ) &&
( PCI_FN0 ( busdevfn ) == cache.busdevfn0 ) &&
( ! cache.is_present ) ) {
return 0;
}
/* Check to see if there's anything physically present.
*/
pci_read_config_dword ( pci, PCI_VENDOR_ID, &l );
/* some broken boards return 0 if a slot is empty: */
if ( ( l == 0xffffffff ) || ( l == 0x00000000 ) ) {
if ( PCI_FUNC ( busdevfn ) == 0 ) {
/* Don't look for subsequent functions if the
* card itself is not present.
*/
cache.busdevfn0 = busdevfn;
cache.is_present = 0;
}
return 0;
}
pci->vendor_id = l & 0xffff;
pci->device_id = ( l >> 16 ) & 0xffff;
/* Check that we're not a duplicate function on a
* non-multifunction device.
*/
if ( PCI_FUNC ( busdevfn ) != 0 ) {
uint8_t header_type;
pci->busdevfn &= PCI_FN0 ( busdevfn );
pci_read_config_byte ( pci, PCI_HEADER_TYPE, &header_type );
pci->busdevfn = busdevfn;
if ( ! ( header_type & 0x80 ) ) {
return 0;
}
}
/* Get device class */
pci_read_config_word ( pci, PCI_SUBCLASS_CODE, &pci->class );
/* Get revision */
pci_read_config_byte ( pci, PCI_REVISION, &pci->revision );
/* Get the "membase" */
pci_read_config_dword ( pci, PCI_BASE_ADDRESS_1, &pci->membase );
/* Get the "ioaddr" */
pci->ioaddr = 0;
for ( reg = PCI_BASE_ADDRESS_0; reg <= PCI_BASE_ADDRESS_5; reg += 4 ) {
pci_read_config_dword ( pci, reg, &pci->ioaddr );
if ( pci->ioaddr & PCI_BASE_ADDRESS_SPACE_IO ) {
pci->ioaddr &= PCI_BASE_ADDRESS_IO_MASK;
if ( pci->ioaddr ) {
break;
pci_read_config_dword ( pci, reg, &low );
if ( ( low & (PCI_BASE_ADDRESS_SPACE|PCI_BASE_ADDRESS_MEM_TYPE_MASK) )
== (PCI_BASE_ADDRESS_SPACE_MEMORY|PCI_BASE_ADDRESS_MEM_TYPE_64) ){
pci_read_config_dword ( pci, reg + 4, &high );
if ( high ) {
if ( sizeof ( unsigned long ) > sizeof ( uint32_t ) ) {
return ( ( ( uint64_t ) high << 32 ) | low );
} else {
DBG ( "Unhandled 64-bit BAR %08x%08x\n",
high, low );
return PCI_BASE_ADDRESS_MEM_TYPE_64;
}
}
pci->ioaddr = 0;
}
/* Get the irq */
pci_read_config_byte ( pci, PCI_INTERRUPT_PIN, &pci->irq );
if ( pci->irq ) {
pci_read_config_byte ( pci, PCI_INTERRUPT_LINE, &pci->irq );
}
DBG ( "PCI found device %hhx:%hhx.%d Class %hx: %hx:%hx (rev %hhx)\n",
PCI_BUS ( pci->busdevfn ), PCI_DEV ( pci->busdevfn ),
PCI_FUNC ( pci->busdevfn ), pci->class, pci->vendor_id,
pci->device_id, pci->revision );
return 1;
return low;
}
/*
* Test whether or not a driver is capable of driving the device.
/**
* Find the start of a PCI BAR
*
* @v pci PCI device
* @v reg PCI register number
* @ret start BAR start address
*
* Reads the specified PCI base address register, and returns the
* address portion of the BAR (i.e. without the flags).
*
* If the address exceeds the size of an unsigned long (i.e. if a
* 64-bit BAR has a non-zero high dword on a 32-bit machine), the
* return value will be zero.
*/
static int pci_check_driver ( struct bus_dev *bus_dev,
struct device_driver *device_driver ) {
struct pci_device *pci = ( struct pci_device * ) bus_dev;
struct pci_driver *pci_driver
= ( struct pci_driver * ) device_driver->bus_driver_info;
unsigned int i;
unsigned long pci_bar_start ( struct pci_device *pci, unsigned int reg ) {
unsigned long bar;
/* If driver has a class, and class matches, use it */
if ( pci_driver->class &&
( pci_driver->class == pci->class ) ) {
DBG ( "PCI driver %s matches class %hx\n",
device_driver->name, pci_driver->class );
pci->name = device_driver->name;
return 1;
bar = pci_bar ( pci, reg );
if ( (bar & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_MEMORY ){
return ( bar & PCI_BASE_ADDRESS_MEM_MASK );
} else {
return ( bar & PCI_BASE_ADDRESS_IO_MASK );
}
/* If any of driver's IDs match, use it */
for ( i = 0 ; i < pci_driver->id_count; i++ ) {
struct pci_id *id = &pci_driver->ids[i];
if ( ( pci->vendor_id == id->vendor_id ) &&
( pci->device_id == id->device_id ) ) {
DBG ( "PCI driver %s device %s matches ID %hx:%hx\n",
device_driver->name, id->name,
id->vendor_id, id->device_id );
pci->name = id->name;
return 1;
}
/**
* Read membase and ioaddr for a PCI device
*
* @v pci PCI device
*
* This scans through all PCI BARs on the specified device. The first
* valid memory BAR is recorded as pci_device::membase, and the first
* valid IO BAR is recorded as pci_device::ioaddr.
*
* 64-bit BARs are handled automatically. On a 32-bit platform, if a
* 64-bit BAR has a non-zero high dword, it will be regarded as
* invalid.
*/
static void pci_read_bases ( struct pci_device *pci ) {
unsigned long bar;
int reg;
for ( reg = PCI_BASE_ADDRESS_0; reg <= PCI_BASE_ADDRESS_5; reg += 4 ) {
bar = pci_bar ( pci, reg );
if ( bar & PCI_BASE_ADDRESS_SPACE_IO ) {
if ( ! pci->ioaddr )
pci->ioaddr =
( bar & PCI_BASE_ADDRESS_IO_MASK );
} else {
if ( ! pci->membase )
pci->membase =
( bar & PCI_BASE_ADDRESS_MEM_MASK );
/* Skip next BAR if 64-bit */
if ( bar & PCI_BASE_ADDRESS_MEM_TYPE_64 )
reg += 4;
}
}
return 0;
}
/*
* Describe a PCI device
/**
* Enable PCI device
*
*/
static char * pci_describe_device ( struct bus_dev *bus_dev ) {
struct pci_device *pci = ( struct pci_device * ) bus_dev;
static char pci_description[] = "PCI 00:00.0";
sprintf ( pci_description + 4, "%hhx:%hhx.%d",
PCI_BUS ( pci->busdevfn ), PCI_DEV ( pci->busdevfn ),
PCI_FUNC ( pci->busdevfn ) );
return pci_description;
}
/*
* Name a PCI device
* @v pci PCI device
*
*/
static const char * pci_name_device ( struct bus_dev *bus_dev ) {
struct pci_device *pci = ( struct pci_device * ) bus_dev;
return pci->name;
}
/*
* PCI bus operations table
*
*/
struct bus_driver pci_driver __bus_driver = {
.name = "PCI",
.next_location = pci_next_location,
.fill_device = pci_fill_device,
.check_driver = pci_check_driver,
.describe_device = pci_describe_device,
.name_device = pci_name_device,
};
/*
* Set device to be a busmaster in case BIOS neglected to do so. Also
* adjust PCI latency timer to a reasonable value, 32.
*/
void adjust_pci_device ( struct pci_device *pci ) {
unsigned short new_command, pci_command;
unsigned char pci_latency;
unsigned short new_command, pci_command;
unsigned char pci_latency;
pci_read_config_word ( pci, PCI_COMMAND, &pci_command );
new_command = pci_command | PCI_COMMAND_MASTER | PCI_COMMAND_IO;
if ( pci_command != new_command ) {
DBG ( "PCI BIOS has not enabled device %hhx:%hhx.%d! "
"Updating PCI command %hX->%hX\n",
PCI_BUS ( pci->busdevfn ), PCI_DEV ( pci->busdevfn ),
PCI_FUNC ( pci->busdevfn ), pci_command, new_command );
DBG ( "PCI BIOS has not enabled device %02x:%02x.%x! "
"Updating PCI command %04x->%04x\n", pci->bus,
PCI_SLOT ( pci->devfn ), PCI_FUNC ( pci->devfn ),
pci_command, new_command );
pci_write_config_word ( pci, PCI_COMMAND, new_command );
}
pci_read_config_byte ( pci, PCI_LATENCY_TIMER, &pci_latency);
if ( pci_latency < 32 ) {
DBG ( "PCI device %hhx:%hhx.%d latency timer is "
"unreasonably low at %d. Setting to 32.\n",
PCI_BUS ( pci->busdevfn ), PCI_DEV ( pci->busdevfn ),
PCI_FUNC ( pci->busdevfn ), pci_latency );
DBG ( "PCI device %02x:%02x.%x latency timer is unreasonably "
"low at %d. Setting to 32.\n", pci->bus,
PCI_SLOT ( pci->devfn ), PCI_FUNC ( pci->devfn ),
pci_latency );
pci_write_config_byte ( pci, PCI_LATENCY_TIMER, 32);
}
}
/*
* Find the start of a pci resource.
/**
* Register PCI device
*
* @v pci PCI device
* @ret rc Return status code
*
* Searches for a driver for the PCI device. If a driver is found,
* its probe() routine is called, and the device is added to the
* device hierarchy.
*/
unsigned long pci_bar_start ( struct pci_device *pci, unsigned int index ) {
uint32_t lo, hi;
unsigned long bar;
static int register_pcidev ( struct pci_device *pci ) {
struct pci_driver *driver;
struct pci_device_id *id;
unsigned int i;
int rc;
pci_read_config_dword ( pci, index, &lo );
if ( lo & PCI_BASE_ADDRESS_SPACE_IO ) {
bar = lo & PCI_BASE_ADDRESS_IO_MASK;
} else {
bar = 0;
if ( ( lo & PCI_BASE_ADDRESS_MEM_TYPE_MASK ) ==
PCI_BASE_ADDRESS_MEM_TYPE_64) {
pci_read_config_dword ( pci, index + 4, &hi );
if ( hi ) {
#if ULONG_MAX > 0xffffffff
bar = hi;
bar <<= 32;
#else
printf ( "Unhandled 64bit BAR %08x:%08x\n",
hi, lo );
return -1UL;
#endif
DBG ( "Registering PCI device %02x:%02x.%x (%04x:%04x mem %lx "
"io %lx irq %d)\n", pci->bus, PCI_SLOT ( pci->devfn ),
PCI_FUNC ( pci->devfn ), pci->vendor, pci->device,
pci->membase, pci->ioaddr, pci->irq );
for ( driver = pci_drivers ; driver < pci_drivers_end ; driver++ ) {
for ( i = 0 ; i < driver->id_count ; i++ ) {
id = &driver->ids[i];
if ( ( id->vendor != pci->vendor ) ||
( id->device != pci->device ) )
continue;
pci->driver = driver;
pci->name = id->name;
DBG ( "...using driver %s\n", pci->name );
if ( ( rc = driver->probe ( pci, id ) ) != 0 ) {
DBG ( "......probe failed\n" );
continue;
}
list_add ( &pci->dev.siblings,
&pci->dev.parent->children );
return 0;
}
bar |= lo & PCI_BASE_ADDRESS_MEM_MASK;
}
return bar + pci_bus_base ( pci );
}
/*
* Find the size of a pci resource.
*/
unsigned long pci_bar_size ( struct pci_device *pci, unsigned int bar ) {
uint32_t start, size;
/* Save the original bar */
pci_read_config_dword ( pci, bar, &start );
/* Compute which bits can be set */
pci_write_config_dword ( pci, bar, ~0 );
pci_read_config_dword ( pci, bar, &size );
/* Restore the original size */
pci_write_config_dword ( pci, bar, start );
/* Find the significant bits */
if ( start & PCI_BASE_ADDRESS_SPACE_IO ) {
size &= PCI_BASE_ADDRESS_IO_MASK;
} else {
size &= PCI_BASE_ADDRESS_MEM_MASK;
}
/* Find the lowest bit set */
size = size & ~( size - 1 );
return size;
DBG ( "...no driver found\n" );
return -ENOTTY;
}
/**
* pci_find_capability - query for devices' capabilities
* @pci: PCI device to query
* @cap: capability code
* Unregister a PCI device
*
* Tell if a device supports a given PCI capability.
* Returns the address of the requested capability structure within the
* device's PCI configuration space or 0 in case the device does not
* support it. Possible values for @cap:
* @v pci PCI device
*
* %PCI_CAP_ID_PM Power Management
*
* %PCI_CAP_ID_AGP Accelerated Graphics Port
*
* %PCI_CAP_ID_VPD Vital Product Data
*
* %PCI_CAP_ID_SLOTID Slot Identification
*
* %PCI_CAP_ID_MSI Message Signalled Interrupts
*
* %PCI_CAP_ID_CHSWP CompactPCI HotSwap
* Calls the device's driver's remove() routine, and removes the
* device from the device hierarchy.
*/
int pci_find_capability ( struct pci_device *pci, int cap ) {
uint16_t status;
uint8_t pos, id;
uint8_t hdr_type;
int ttl = 48;
static void unregister_pcidev ( struct pci_device *pci ) {
pci->driver->remove ( pci );
list_del ( &pci->dev.siblings );
DBG ( "Unregistered PCI device %02x:%02x.%x\n", pci->bus,
PCI_SLOT ( pci->devfn ), PCI_FUNC ( pci->devfn ) );
}
pci_read_config_word ( pci, PCI_STATUS, &status );
if ( ! ( status & PCI_STATUS_CAP_LIST ) )
return 0;
/**
* Probe PCI root bus
*
* @v rootdev PCI bus root device
*
* Scans the PCI bus for devices and registers all devices it can
* find.
*/
static int pcibus_probe ( struct root_device *rootdev ) {
struct pci_device *pci = NULL;
unsigned int bus;
unsigned int devfn;
uint8_t hdrtype;
uint32_t tmp;
int rc;
pci_read_config_byte ( pci, PCI_HEADER_TYPE, &hdr_type );
switch ( hdr_type & 0x7F ) {
case PCI_HEADER_TYPE_NORMAL:
case PCI_HEADER_TYPE_BRIDGE:
default:
pci_read_config_byte ( pci, PCI_CAPABILITY_LIST, &pos );
break;
case PCI_HEADER_TYPE_CARDBUS:
pci_read_config_byte ( pci, PCI_CB_CAPABILITY_LIST, &pos );
break;
}
while ( ttl-- && pos >= 0x40 ) {
pos &= ~3;
pci_read_config_byte ( pci, pos + PCI_CAP_LIST_ID, &id );
DBG ( "PCI Capability: %d\n", id );
if ( id == 0xff )
break;
if ( id == cap )
return pos;
pci_read_config_byte ( pci, pos + PCI_CAP_LIST_NEXT, &pos );
for ( bus = 0 ; bus <= pci_max_bus ; bus++ ) {
for ( devfn = 0 ; devfn <= 0xff ; devfn++ ) {
/* Allocate struct pci_device */
if ( ! pci )
pci = malloc ( sizeof ( *pci ) );
if ( ! pci ) {
rc = -ENOMEM;
goto err;
}
memset ( pci, 0, sizeof ( *pci ) );
pci->bus = bus;
pci->devfn = devfn;
/* Skip all but the first function on
* non-multifunction cards
*/
if ( PCI_FUNC ( devfn ) == 0 ) {
pci_read_config_byte ( pci, PCI_HEADER_TYPE,
&hdrtype );
} else if ( ! ( hdrtype & 0x80 ) ) {
continue;
}
/* Check for physical device presence */
pci_read_config_dword ( pci, PCI_VENDOR_ID, &tmp );
if ( ( tmp == 0xffffffff ) || ( tmp == 0 ) )
continue;
/* Populate struct pci_device */
pci->vendor = ( tmp & 0xffff );
pci->device = ( tmp >> 16 );
pci_read_config_dword ( pci, PCI_REVISION, &tmp );
pci->class = ( tmp >> 8 );
pci_read_config_byte ( pci, PCI_INTERRUPT_LINE,
&pci->irq );
pci_read_bases ( pci );
INIT_LIST_HEAD ( &pci->dev.children );
pci->dev.parent = &rootdev->dev;
/* Look for a driver */
if ( register_pcidev ( pci ) == 0 ) {
/* pcidev registered, we can drop our ref */
pci = NULL;
} else {
/* Not registered; re-use struct pci_device */
}
}
}
free ( pci );
return 0;
err:
free ( pci );
pcibus_remove ( rootdev );
return rc;
}
/*
* Fill in a nic structure
/**
* Remove PCI root bus
*
* @v rootdev PCI bus root device
*/
void pci_fill_nic ( struct nic *nic, struct pci_device *pci ) {
static void pcibus_remove ( struct root_device *rootdev ) {
struct pci_device *pci;
struct pci_device *tmp;
/* Fill in ioaddr and irqno */
nic->ioaddr = pci->ioaddr;
nic->irqno = pci->irq;
/* Fill in DHCP device ID structure */
nic->dhcp_dev_id.bus_type = PCI_BUS_TYPE;
nic->dhcp_dev_id.vendor_id = htons ( pci->vendor_id );
nic->dhcp_dev_id.device_id = htons ( pci->device_id );
list_for_each_entry_safe ( pci, tmp, &rootdev->dev.children,
dev.siblings ) {
unregister_pcidev ( pci );
free ( pci );
}
}
/** PCI bus root device driver */
static struct root_driver pci_root_driver = {
.probe = pcibus_probe,
.remove = pcibus_remove,
};
/** PCI bus root device */
struct root_device pci_root_device __root_device = {
.name = "PCI",
.driver = &pci_root_driver,
.dev = {
.children = LIST_HEAD_INIT ( pci_root_device.dev.children ),
},
};

View File

@@ -0,0 +1,79 @@
#include <stdint.h>
#include <gpxe/pci.h>
/**
* Look for a PCI capability
*
* @v pci PCI device to query
* @v cap Capability code
* @ret address Address of capability, or 0 if not found
*
* Determine whether or not a device supports a given PCI capability.
* Returns the address of the requested capability structure within
* the device's PCI configuration space, or 0 if the device does not
* support it.
*/
int pci_find_capability ( struct pci_device *pci, int cap ) {
uint16_t status;
uint8_t pos, id;
uint8_t hdr_type;
int ttl = 48;
pci_read_config_word ( pci, PCI_STATUS, &status );
if ( ! ( status & PCI_STATUS_CAP_LIST ) )
return 0;
pci_read_config_byte ( pci, PCI_HEADER_TYPE, &hdr_type );
switch ( hdr_type & 0x7F ) {
case PCI_HEADER_TYPE_NORMAL:
case PCI_HEADER_TYPE_BRIDGE:
default:
pci_read_config_byte ( pci, PCI_CAPABILITY_LIST, &pos );
break;
case PCI_HEADER_TYPE_CARDBUS:
pci_read_config_byte ( pci, PCI_CB_CAPABILITY_LIST, &pos );
break;
}
while ( ttl-- && pos >= 0x40 ) {
pos &= ~3;
pci_read_config_byte ( pci, pos + PCI_CAP_LIST_ID, &id );
DBG ( "PCI Capability: %d\n", id );
if ( id == 0xff )
break;
if ( id == cap )
return pos;
pci_read_config_byte ( pci, pos + PCI_CAP_LIST_NEXT, &pos );
}
return 0;
}
/**
* Find the size of a PCI BAR
*
* @v pci PCI device
* @v reg PCI register number
* @ret size BAR size
*
* It should not be necessary for any Etherboot code to call this
* function.
*/
unsigned long pci_bar_size ( struct pci_device *pci, unsigned int reg ) {
uint32_t start, size;
/* Save the original bar */
pci_read_config_dword ( pci, reg, &start );
/* Compute which bits can be set */
pci_write_config_dword ( pci, reg, ~0 );
pci_read_config_dword ( pci, reg, &size );
/* Restore the original size */
pci_write_config_dword ( pci, reg, start );
/* Find the significant bits */
if ( start & PCI_BASE_ADDRESS_SPACE_IO ) {
size &= PCI_BASE_ADDRESS_IO_MASK;
} else {
size &= PCI_BASE_ADDRESS_MEM_MASK;
}
/* Find the lowest bit set */
size = size & ~( size - 1 );
return size;
}