Files
ipxe/src/arch/x86/include/bits/bigint.h

330 lines
9.2 KiB
C
Raw Normal View History

#ifndef _BITS_BIGINT_H
#define _BITS_BIGINT_H
/** @file
*
* Big integer support
*/
FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
#include <stdint.h>
#include <string.h>
/** Element of a big integer */
typedef uint32_t bigint_element_t;
/**
* Initialise big integer
*
* @v value0 Element 0 of big integer to initialise
* @v size Number of elements
* @v data Raw data
* @v len Length of raw data
*/
static inline __attribute__ (( always_inline )) void
bigint_init_raw ( uint32_t *value0, unsigned int size,
const void *data, size_t len ) {
bigint_t ( size ) __attribute__ (( may_alias )) *value =
( ( void * ) value0 );
long pad_len = ( sizeof ( *value ) - len );
void *discard_D;
long discard_c;
/* Copy raw data in reverse order, padding with zeros */
__asm__ __volatile__ ( "\n1:\n\t"
"movb -1(%3,%1), %%al\n\t"
"stosb\n\t"
"loop 1b\n\t"
"xorl %%eax, %%eax\n\t"
"mov %4, %1\n\t"
"rep stosb\n\t"
: "=&D" ( discard_D ), "=&c" ( discard_c ),
"+m" ( *value )
: "r" ( data ), "g" ( pad_len ), "0" ( value0 ),
"1" ( len )
: "eax" );
}
/**
* Add big integers
*
* @v addend0 Element 0 of big integer to add
* @v value0 Element 0 of big integer to be added to
* @v size Number of elements
*/
static inline __attribute__ (( always_inline )) void
bigint_add_raw ( const uint32_t *addend0, uint32_t *value0,
unsigned int size ) {
bigint_t ( size ) __attribute__ (( may_alias )) *value =
( ( void * ) value0 );
long index;
void *discard_S;
long discard_c;
__asm__ __volatile__ ( "xor %0, %0\n\t" /* Zero %0 and clear CF */
"\n1:\n\t"
"lodsl\n\t"
"adcl %%eax, (%4,%0,4)\n\t"
"inc %0\n\t" /* Does not affect CF */
"loop 1b\n\t"
: "=&r" ( index ), "=&S" ( discard_S ),
"=&c" ( discard_c ), "+m" ( *value )
: "r" ( value0 ), "1" ( addend0 ), "2" ( size )
: "eax" );
}
/**
* Subtract big integers
*
* @v subtrahend0 Element 0 of big integer to subtract
* @v value0 Element 0 of big integer to be subtracted from
* @v size Number of elements
*/
static inline __attribute__ (( always_inline )) void
bigint_subtract_raw ( const uint32_t *subtrahend0, uint32_t *value0,
unsigned int size ) {
bigint_t ( size ) __attribute__ (( may_alias )) *value =
( ( void * ) value0 );
long index;
void *discard_S;
long discard_c;
__asm__ __volatile__ ( "xor %0, %0\n\t" /* Zero %0 and clear CF */
"\n1:\n\t"
"lodsl\n\t"
"sbbl %%eax, (%4,%0,4)\n\t"
"inc %0\n\t" /* Does not affect CF */
"loop 1b\n\t"
: "=&r" ( index ), "=&S" ( discard_S ),
"=&c" ( discard_c ), "+m" ( *value )
: "r" ( value0 ), "1" ( subtrahend0 ),
"2" ( size )
: "eax" );
}
/**
* Rotate big integer left
*
* @v value0 Element 0 of big integer
* @v size Number of elements
*/
static inline __attribute__ (( always_inline )) void
bigint_rol_raw ( uint32_t *value0, unsigned int size ) {
bigint_t ( size ) __attribute__ (( may_alias )) *value =
( ( void * ) value0 );
long index;
long discard_c;
__asm__ __volatile__ ( "xor %0, %0\n\t" /* Zero %0 and clear CF */
"\n1:\n\t"
"rcll $1, (%3,%0,4)\n\t"
"inc %0\n\t" /* Does not affect CF */
"loop 1b\n\t"
: "=&r" ( index ), "=&c" ( discard_c ),
"+m" ( *value )
: "r" ( value0 ), "1" ( size ) );
}
/**
* Rotate big integer right
*
* @v value0 Element 0 of big integer
* @v size Number of elements
*/
static inline __attribute__ (( always_inline )) void
bigint_ror_raw ( uint32_t *value0, unsigned int size ) {
bigint_t ( size ) __attribute__ (( may_alias )) *value =
( ( void * ) value0 );
long discard_c;
__asm__ __volatile__ ( "clc\n\t"
"\n1:\n\t"
"rcrl $1, -4(%2,%0,4)\n\t"
"loop 1b\n\t"
: "=&c" ( discard_c ), "+m" ( *value )
: "r" ( value0 ), "0" ( size ) );
}
/**
* Test if big integer is equal to zero
*
* @v value0 Element 0 of big integer
* @v size Number of elements
* @ret is_zero Big integer is equal to zero
*/
static inline __attribute__ (( always_inline, pure )) int
bigint_is_zero_raw ( const uint32_t *value0, unsigned int size ) {
void *discard_D;
long discard_c;
int result;
__asm__ __volatile__ ( "xor %0, %0\n\t" /* Set ZF */
"repe scasl\n\t"
"sete %b0\n\t"
: "=&a" ( result ), "=&D" ( discard_D ),
"=&c" ( discard_c )
: "1" ( value0 ), "2" ( size ) );
return result;
}
/**
* Compare big integers
*
* @v value0 Element 0 of big integer
* @v reference0 Element 0 of reference big integer
* @v size Number of elements
* @ret geq Big integer is greater than or equal to the reference
*/
static inline __attribute__ (( always_inline, pure )) int
bigint_is_geq_raw ( const uint32_t *value0, const uint32_t *reference0,
unsigned int size ) {
long discard_c;
[crypto] Avoid temporarily setting direction flag in bigint_is_geq() The UEFI specification states that the calling convention for IA-32 and x64 includes "Direction flag in EFLAGS is clear". This specification covers only the calling convention used at the point of calling functions annotated with EFIAPI. The specification explicitly states that other functions (such as private functions or static library calls) are not required to follow the UEFI calling conventions. The reference EDK2 implementation follows this specification. In particular, the EDK2 interrupt handlers will clear the direction flag before calling any EFIAPI functions, and will restore the direction flag when returning from the interrupt handler. Some EDK2 private library functions (most notably InternalMemCopyMem) may set the direction flag temporarily in order to make efficient use of CPU string operations. The current implementation of iPXE's bigint_is_geq() for i386 and x86_64 will similarly set the direction flag temporarily in order to make efficient use of CPU string operations. On some UEFI implementations (observed with a Getac RX10 tablet), a timer interrupt that happens to occur while the direction flag is set will reboot the machine. This very strongly indicates that the UEFI timer interrupt handler is failing to clear the direction flag before performing an affected operation (such as copying a block of memory). Work around such buggy UEFI implementations by rewriting bigint_is_geq() to avoid the use of string operations and so obviate the requirement to temporarily set the direction flag. Signed-off-by: Michael Brown <mcb30@ipxe.org>
2020-07-07 00:09:40 +01:00
long discard_tmp;
int result;
[crypto] Avoid temporarily setting direction flag in bigint_is_geq() The UEFI specification states that the calling convention for IA-32 and x64 includes "Direction flag in EFLAGS is clear". This specification covers only the calling convention used at the point of calling functions annotated with EFIAPI. The specification explicitly states that other functions (such as private functions or static library calls) are not required to follow the UEFI calling conventions. The reference EDK2 implementation follows this specification. In particular, the EDK2 interrupt handlers will clear the direction flag before calling any EFIAPI functions, and will restore the direction flag when returning from the interrupt handler. Some EDK2 private library functions (most notably InternalMemCopyMem) may set the direction flag temporarily in order to make efficient use of CPU string operations. The current implementation of iPXE's bigint_is_geq() for i386 and x86_64 will similarly set the direction flag temporarily in order to make efficient use of CPU string operations. On some UEFI implementations (observed with a Getac RX10 tablet), a timer interrupt that happens to occur while the direction flag is set will reboot the machine. This very strongly indicates that the UEFI timer interrupt handler is failing to clear the direction flag before performing an affected operation (such as copying a block of memory). Work around such buggy UEFI implementations by rewriting bigint_is_geq() to avoid the use of string operations and so obviate the requirement to temporarily set the direction flag. Signed-off-by: Michael Brown <mcb30@ipxe.org>
2020-07-07 00:09:40 +01:00
__asm__ __volatile__ ( "\n1:\n\t"
"movl -4(%3, %1, 4), %k2\n\t"
"cmpl -4(%4, %1, 4), %k2\n\t"
"loope 1b\n\t"
"setae %b0\n\t"
[crypto] Avoid temporarily setting direction flag in bigint_is_geq() The UEFI specification states that the calling convention for IA-32 and x64 includes "Direction flag in EFLAGS is clear". This specification covers only the calling convention used at the point of calling functions annotated with EFIAPI. The specification explicitly states that other functions (such as private functions or static library calls) are not required to follow the UEFI calling conventions. The reference EDK2 implementation follows this specification. In particular, the EDK2 interrupt handlers will clear the direction flag before calling any EFIAPI functions, and will restore the direction flag when returning from the interrupt handler. Some EDK2 private library functions (most notably InternalMemCopyMem) may set the direction flag temporarily in order to make efficient use of CPU string operations. The current implementation of iPXE's bigint_is_geq() for i386 and x86_64 will similarly set the direction flag temporarily in order to make efficient use of CPU string operations. On some UEFI implementations (observed with a Getac RX10 tablet), a timer interrupt that happens to occur while the direction flag is set will reboot the machine. This very strongly indicates that the UEFI timer interrupt handler is failing to clear the direction flag before performing an affected operation (such as copying a block of memory). Work around such buggy UEFI implementations by rewriting bigint_is_geq() to avoid the use of string operations and so obviate the requirement to temporarily set the direction flag. Signed-off-by: Michael Brown <mcb30@ipxe.org>
2020-07-07 00:09:40 +01:00
: "=q" ( result ), "=&c" ( discard_c ),
"=&r" ( discard_tmp )
: "r" ( value0 ), "r" ( reference0 ),
"0" ( 0 ), "1" ( size ) );
return result;
}
/**
* Test if bit is set in big integer
*
* @v value0 Element 0 of big integer
* @v size Number of elements
* @v bit Bit to test
* @ret is_set Bit is set
*/
static inline __attribute__ (( always_inline )) int
bigint_bit_is_set_raw ( const uint32_t *value0, unsigned int size,
unsigned int bit ) {
const bigint_t ( size ) __attribute__ (( may_alias )) *value =
( ( const void * ) value0 );
unsigned int index = ( bit / ( 8 * sizeof ( value->element[0] ) ) );
unsigned int subindex = ( bit % ( 8 * sizeof ( value->element[0] ) ) );
return ( value->element[index] & ( 1 << subindex ) );
}
/**
* Find highest bit set in big integer
*
* @v value0 Element 0 of big integer
* @v size Number of elements
* @ret max_bit Highest bit set + 1 (or 0 if no bits set)
*/
static inline __attribute__ (( always_inline )) int
bigint_max_set_bit_raw ( const uint32_t *value0, unsigned int size ) {
long discard_c;
int result;
__asm__ __volatile__ ( "\n1:\n\t"
"bsrl -4(%2,%1,4), %0\n\t"
"loopz 1b\n\t"
"rol %1\n\t" /* Does not affect ZF */
"rol %1\n\t"
"leal 1(%k0,%k1,8), %k0\n\t"
"jnz 2f\n\t"
"xor %0, %0\n\t"
"\n2:\n\t"
: "=&r" ( result ), "=&c" ( discard_c )
: "r" ( value0 ), "1" ( size ) );
return result;
}
/**
* Grow big integer
*
* @v source0 Element 0 of source big integer
* @v source_size Number of elements in source big integer
* @v dest0 Element 0 of destination big integer
* @v dest_size Number of elements in destination big integer
*/
static inline __attribute__ (( always_inline )) void
bigint_grow_raw ( const uint32_t *source0, unsigned int source_size,
uint32_t *dest0, unsigned int dest_size ) {
bigint_t ( dest_size ) __attribute__ (( may_alias )) *dest =
( ( void * ) dest0 );
long pad_size = ( dest_size - source_size );
void *discard_D;
void *discard_S;
long discard_c;
__asm__ __volatile__ ( "rep movsl\n\t"
"xorl %%eax, %%eax\n\t"
"mov %4, %2\n\t"
"rep stosl\n\t"
: "=&D" ( discard_D ), "=&S" ( discard_S ),
"=&c" ( discard_c ), "+m" ( *dest )
: "g" ( pad_size ), "0" ( dest0 ),
"1" ( source0 ), "2" ( source_size )
: "eax" );
}
/**
* Shrink big integer
*
* @v source0 Element 0 of source big integer
* @v source_size Number of elements in source big integer
* @v dest0 Element 0 of destination big integer
* @v dest_size Number of elements in destination big integer
*/
static inline __attribute__ (( always_inline )) void
bigint_shrink_raw ( const uint32_t *source0, unsigned int source_size __unused,
uint32_t *dest0, unsigned int dest_size ) {
bigint_t ( dest_size ) __attribute__ (( may_alias )) *dest =
( ( void * ) dest0 );
void *discard_D;
void *discard_S;
long discard_c;
__asm__ __volatile__ ( "rep movsl\n\t"
: "=&D" ( discard_D ), "=&S" ( discard_S ),
"=&c" ( discard_c ), "+m" ( *dest )
: "0" ( dest0 ), "1" ( source0 ),
"2" ( dest_size )
: "eax" );
}
/**
* Finalise big integer
*
* @v value0 Element 0 of big integer to finalise
* @v size Number of elements
* @v out Output buffer
* @v len Length of output buffer
*/
static inline __attribute__ (( always_inline )) void
bigint_done_raw ( const uint32_t *value0, unsigned int size __unused,
void *out, size_t len ) {
struct {
uint8_t bytes[len];
} __attribute__ (( may_alias )) *out_bytes = out;
void *discard_D;
long discard_c;
/* Copy raw data in reverse order */
__asm__ __volatile__ ( "\n1:\n\t"
"movb -1(%3,%1), %%al\n\t"
"stosb\n\t"
"loop 1b\n\t"
: "=&D" ( discard_D ), "=&c" ( discard_c ),
"+m" ( *out_bytes )
: "r" ( value0 ), "0" ( out ), "1" ( len )
: "eax" );
}
extern void bigint_multiply_raw ( const uint32_t *multiplicand0,
const uint32_t *multiplier0,
uint32_t *value0, unsigned int size );
#endif /* _BITS_BIGINT_H */